forked from Anjok07/ultimatevocalremovergui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
separate.py
944 lines (755 loc) · 48 KB
/
separate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
from __future__ import annotations
from typing import TYPE_CHECKING
from demucs.apply import apply_model, demucs_segments
from demucs.hdemucs import HDemucs
from demucs.model_v2 import auto_load_demucs_model_v2
from demucs.pretrained import get_model as _gm
from demucs.utils import apply_model_v1
from demucs.utils import apply_model_v2
from lib_v5 import spec_utils
from lib_v5.vr_network import nets
from lib_v5.vr_network import nets_new
#from lib_v5.vr_network.model_param_init import ModelParameters
from pathlib import Path
from gui_data.constants import *
import audioread
import gzip
import librosa
import math
import numpy as np
import onnxruntime as ort
import os
import torch
import warnings
import pydub
import soundfile as sf
if TYPE_CHECKING:
from UVR import ModelData
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
class SeperateAttributes:
def __init__(self, model_data: ModelData, process_data: dict, main_model_primary_stem_4_stem=None, main_process_method=None):
self.list_all_models: list
self.process_data = process_data
self.progress_value = 0
self.set_progress_bar = process_data['set_progress_bar']
self.write_to_console = process_data['write_to_console']
self.audio_file = process_data['audio_file']
self.audio_file_base = process_data['audio_file_base']
self.export_path = process_data['export_path']
self.cached_source_callback = process_data['cached_source_callback']
self.cached_model_source_holder = process_data['cached_model_source_holder']
self.is_4_stem_ensemble = process_data['is_4_stem_ensemble']
self.list_all_models = process_data['list_all_models']
self.process_iteration = process_data['process_iteration']
self.model_samplerate = model_data.model_samplerate
self.is_pre_proc_model = model_data.is_pre_proc_model
self.is_secondary_model_activated = model_data.is_secondary_model_activated if not self.is_pre_proc_model else False
self.is_secondary_model = model_data.is_secondary_model if not self.is_pre_proc_model else True
self.process_method = model_data.process_method
self.model_path = model_data.model_path
self.model_name = model_data.model_name
self.model_basename = model_data.model_basename
self.wav_type_set = model_data.wav_type_set
self.mp3_bit_set = model_data.mp3_bit_set
self.save_format = model_data.save_format
self.is_gpu_conversion = model_data.is_gpu_conversion
self.is_normalization = model_data.is_normalization
self.is_primary_stem_only = model_data.is_primary_stem_only if not self.is_secondary_model else model_data.is_primary_model_primary_stem_only
self.is_secondary_stem_only = model_data.is_secondary_stem_only if not self.is_secondary_model else model_data.is_primary_model_secondary_stem_only
self.is_ensemble_mode = model_data.is_ensemble_mode
self.secondary_model = model_data.secondary_model #
self.primary_model_primary_stem = model_data.primary_model_primary_stem
self.primary_stem = model_data.primary_stem #
self.secondary_stem = model_data.secondary_stem #
self.is_invert_spec = model_data.is_invert_spec #
self.secondary_model_scale = model_data.secondary_model_scale #
self.is_demucs_pre_proc_model_inst_mix = model_data.is_demucs_pre_proc_model_inst_mix #
self.primary_source_map = {}
self.secondary_source_map = {}
self.primary_source = None
self.secondary_source = None
self.secondary_source_primary = None
self.secondary_source_secondary = None
if not model_data.process_method == DEMUCS_ARCH_TYPE:
if process_data['is_ensemble_master'] and not self.is_4_stem_ensemble:
if not model_data.ensemble_primary_stem == self.primary_stem:
self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
if self.is_secondary_model and not process_data['is_ensemble_master']:
if not self.primary_model_primary_stem == self.primary_stem and not main_model_primary_stem_4_stem:
self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
if main_model_primary_stem_4_stem:
self.is_primary_stem_only = True if main_model_primary_stem_4_stem == self.primary_stem else False
self.is_secondary_stem_only = True if not main_model_primary_stem_4_stem == self.primary_stem else False
if self.is_pre_proc_model:
self.is_primary_stem_only = True if self.primary_stem == INST_STEM else False
self.is_secondary_stem_only = True if self.secondary_stem == INST_STEM else False
if model_data.process_method == MDX_ARCH_TYPE:
self.primary_model_name, self.primary_sources = self.cached_source_callback(MDX_ARCH_TYPE, model_name=self.model_basename)
self.is_denoise = model_data.is_denoise
self.compensate = model_data.compensate
self.dim_f, self.dim_t = model_data.mdx_dim_f_set, 2**model_data.mdx_dim_t_set
self.n_fft = model_data.mdx_n_fft_scale_set
self.chunks = model_data.chunks
self.margin = model_data.margin
self.hop = 1024
self.n_bins = self.n_fft//2+1
self.chunk_size = self.hop * (self.dim_t-1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=False).to(cpu)
self.dim_c = 4
out_c = self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(cpu)
if model_data.process_method == DEMUCS_ARCH_TYPE:
self.demucs_stems = model_data.demucs_stems if not main_process_method in [MDX_ARCH_TYPE, VR_ARCH_TYPE] else None
self.secondary_model_4_stem = model_data.secondary_model_4_stem
self.secondary_model_4_stem_scale = model_data.secondary_model_4_stem_scale
self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem
self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem
self.is_chunk_demucs = model_data.is_chunk_demucs
self.segment = model_data.segment
self.demucs_version = model_data.demucs_version
self.demucs_source_list = model_data.demucs_source_list
self.demucs_source_map = model_data.demucs_source_map
self.is_demucs_combine_stems = model_data.is_demucs_combine_stems
self.demucs_stem_count = model_data.demucs_stem_count
self.pre_proc_model = model_data.pre_proc_model
if self.is_secondary_model and not process_data['is_ensemble_master']:
if not self.demucs_stem_count == 2 and model_data.primary_model_primary_stem == INST_STEM:
self.primary_stem = VOCAL_STEM
self.secondary_stem = INST_STEM
else:
self.primary_stem = model_data.primary_model_primary_stem
self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
if self.is_chunk_demucs:
self.chunks_demucs = model_data.chunks_demucs
self.margin_demucs = model_data.margin_demucs
else:
self.chunks_demucs = 0
self.margin_demucs = 44100
self.shifts = model_data.shifts
self.is_split_mode = model_data.is_split_mode if not self.demucs_version == DEMUCS_V4 else True
self.overlap = model_data.overlap
self.primary_model_name, self.primary_sources = self.cached_source_callback(DEMUCS_ARCH_TYPE, model_name=self.model_basename)
if model_data.process_method == VR_ARCH_TYPE:
self.primary_model_name, self.primary_sources = self.cached_source_callback(VR_ARCH_TYPE, model_name=self.model_basename)
self.mp = model_data.vr_model_param
self.high_end_process = model_data.is_high_end_process
self.is_tta = model_data.is_tta
self.is_post_process = model_data.is_post_process
self.is_gpu_conversion = model_data.is_gpu_conversion
self.batch_size = model_data.batch_size
self.crop_size = model_data.crop_size
self.window_size = model_data.window_size
self.input_high_end_h = None
self.post_process_threshold = model_data.post_process_threshold
self.aggressiveness = {'value': model_data.aggression_setting,
'split_bin': self.mp.param['band'][1]['crop_stop'],
'aggr_correction': self.mp.param.get('aggr_correction')}
def start_inference(self):
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_SEC(self.process_method, self.model_basename))
if self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_PRE(self.process_method, self.model_basename))
def running_inference(self, is_no_write=False):
self.write_to_console(DONE, base_text='') if not is_no_write else None
self.set_progress_bar(0.05) if not is_no_write else None
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_1_SEC)
elif self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_1_PRE)
else:
self.write_to_console(INFERENCE_STEP_1)
def load_cached_sources(self, is_4_stem_demucs=False):
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_SEC_CACHED_MODOEL(self.process_method, self.model_basename))
elif self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_PRE_CACHED_MODOEL(self.process_method, self.model_basename))
else:
self.write_to_console(INFERENCE_STEP_2_PRIMARY_CACHED)
if not is_4_stem_demucs:
primary_stem, secondary_stem = gather_sources(self.primary_stem, self.secondary_stem, self.primary_sources)
return primary_stem, secondary_stem
def cache_source(self, secondary_sources):
model_occurrences = self.list_all_models.count(self.model_basename)
if not model_occurrences <= 1:
if self.process_method == MDX_ARCH_TYPE:
self.cached_model_source_holder(MDX_ARCH_TYPE, secondary_sources, self.model_basename)
if self.process_method == VR_ARCH_TYPE:
self.cached_model_source_holder(VR_ARCH_TYPE, secondary_sources, self.model_basename)
if self.process_method == DEMUCS_ARCH_TYPE:
self.cached_model_source_holder(DEMUCS_ARCH_TYPE, secondary_sources, self.model_basename)
def write_audio(self, stem_path, stem_source, samplerate, secondary_model_source=None, model_scale=None):
if not self.is_secondary_model:
if self.is_secondary_model_activated:
if isinstance(secondary_model_source, np.ndarray):
secondary_model_scale = model_scale if model_scale else self.secondary_model_scale
stem_source = spec_utils.average_dual_sources(stem_source, secondary_model_source, secondary_model_scale)
sf.write(stem_path, stem_source, samplerate, subtype=self.wav_type_set)
save_format(stem_path, self.save_format, self.mp3_bit_set) if not self.is_ensemble_mode else None
self.write_to_console(DONE, base_text='')
self.set_progress_bar(0.95)
class SeperateMDX(SeperateAttributes):
def seperate(self):
samplerate = 44100
if self.primary_model_name == self.model_basename and self.primary_sources:
self.primary_source, self.secondary_source = self.load_cached_sources()
else:
self.start_inference()
if self.is_gpu_conversion >= 0:
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
run_type = ['CUDAExecutionProvider'] if torch.cuda.is_available() else ['CPUExecutionProvider']
else:
self.device = torch.device('cpu')
run_type = ['CPUExecutionProvider']
self.onnx_model = ort.InferenceSession(self.model_path, providers=run_type)
self.running_inference()
mdx_net_cut = True if self.primary_stem in MDX_NET_FREQ_CUT else False
mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks, self.margin, mdx_net_cut=mdx_net_cut)
source = self.demix_base(mix)
self.write_to_console(DONE, base_text='')
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
if not self.is_secondary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(source[0], self.is_normalization).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)
if not self.is_primary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.secondary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
if not isinstance(self.secondary_source, np.ndarray):
raw_mix = self.demix_base(raw_mix, is_match_mix=True)[0] if mdx_net_cut else raw_mix
self.secondary_source, raw_mix = spec_utils.normalize_two_stem(source[0]*self.compensate, raw_mix, self.is_normalization)
if self.is_invert_spec:
self.secondary_source = spec_utils.invert_stem(raw_mix, self.secondary_source)
else:
self.secondary_source = (-self.secondary_source.T+raw_mix.T)
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, self.secondary_source, samplerate, self.secondary_source_secondary)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
if self.is_secondary_model:
return secondary_sources
def demix_base(self, mix, is_match_mix=False):
chunked_sources = []
for slice in mix:
self.progress_value += 1
self.set_progress_bar(0.1, (0.8/len(mix)*self.progress_value)) if not is_match_mix else None
cmix = mix[slice]
sources = []
mix_waves = []
n_sample = cmix.shape[1]
trim = self.n_fft//2
gen_size = self.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+self.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.onnx_model if not is_match_mix else None
adjust = 1
spek = self.stft(mix_waves)*adjust
if not is_match_mix:
if self.is_denoise:
spec_pred = -_ort.run(None, {'input': -spek.cpu().numpy()})[0]*0.5+_ort.run(None, {'input': spek.cpu().numpy()})[0]*0.5
else:
spec_pred = _ort.run(None, {'input': spek.cpu().numpy()})[0]
else:
spec_pred = spek.cpu().numpy()
tar_waves = self.istft(torch.tensor(spec_pred))#.cpu()
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
start = 0 if slice == 0 else self.margin
end = None if slice == list(mix.keys())[::-1][0] else -self.margin
if self.margin == 0:
end = None
sources.append(tar_signal[:,start:end]*(1/adjust))
chunked_sources.append(sources)
sources = np.concatenate(chunked_sources, axis=-1)
if not is_match_mix:
del self.onnx_model
return sources
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
x = x.permute([0,3,1,2])
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,self.dim_c,self.n_bins,self.dim_t])
return x[:,:,:self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
c = 2
x = x.reshape([-1,c,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
x = x.permute([0,2,3,1])
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1,c,self.chunk_size])
class SeperateDemucs(SeperateAttributes):
def seperate(self):
samplerate = 44100
source = None
model_scale = None
stem_source = None
stem_source_secondary = None
inst_mix = None
inst_raw_mix = None
raw_mix = None
inst_source = None
is_no_write = False
is_no_piano_guitar = False
if self.primary_model_name == self.model_basename and type(self.primary_sources) is dict and not self.pre_proc_model:
self.primary_source, self.secondary_source = self.load_cached_sources()
elif self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and not self.pre_proc_model:
source = self.primary_sources
self.load_cached_sources(is_4_stem_demucs=True)
else:
self.start_inference()
if self.is_gpu_conversion >= 0:
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device('cpu')
if self.demucs_version == DEMUCS_V1:
if str(self.model_path).endswith(".gz"):
self.model_path = gzip.open(self.model_path, "rb")
klass, args, kwargs, state = torch.load(self.model_path)
self.demucs = klass(*args, **kwargs)
self.demucs.to(self.device)
self.demucs.load_state_dict(state)
elif self.demucs_version == DEMUCS_V2:
self.demucs = auto_load_demucs_model_v2(self.demucs_source_list, self.model_path)
self.demucs.to(self.device)
self.demucs.load_state_dict(torch.load(self.model_path))
self.demucs.eval()
else:
self.demucs = HDemucs(sources=self.demucs_source_list)
self.demucs = _gm(name=os.path.splitext(os.path.basename(self.model_path))[0],
repo=Path(os.path.dirname(self.model_path)))
self.demucs = demucs_segments(self.segment, self.demucs)
self.demucs.to(self.device)
self.demucs.eval()
if self.pre_proc_model:
if self.primary_stem not in [VOCAL_STEM, INST_STEM]:
is_no_write = True
self.write_to_console(DONE, base_text='')
mix_no_voc = process_secondary_model(self.pre_proc_model, self.process_data, is_pre_proc_model=True)
inst_mix, inst_raw_mix, inst_samplerate = prepare_mix(mix_no_voc[INST_STEM], self.chunks_demucs, self.margin_demucs)
self.process_iteration()
self.running_inference(is_no_write=is_no_write)
inst_source = self.demix_demucs(inst_mix)
self.process_iteration()
self.running_inference(is_no_write=is_no_write) if not self.pre_proc_model else None
mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs)
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and self.pre_proc_model:
source = self.primary_sources
else:
source = self.demix_demucs(mix)
self.write_to_console(DONE, base_text='')
del self.demucs
if isinstance(inst_source, np.ndarray):
source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[VOCAL_STEM]], source[self.demucs_source_map[VOCAL_STEM]])
inst_source[self.demucs_source_map[VOCAL_STEM]] = source_reshape
source = inst_source
if isinstance(source, np.ndarray):
if len(source) == 2:
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER
else:
self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER if len(source) == 6 else DEMUCS_4_SOURCE_MAPPER
if len(source) == 6 and self.process_data['is_ensemble_master'] or len(source) == 6 and self.is_secondary_model:
is_no_piano_guitar = True
six_stem_other_source = list(source)
six_stem_other_source = [i for n, i in enumerate(source) if n in [self.demucs_source_map[OTHER_STEM], self.demucs_source_map[GUITAR_STEM], self.demucs_source_map[PIANO_STEM]]]
other_source = np.zeros_like(six_stem_other_source[0])
for i in six_stem_other_source:
other_source += i
source_reshape = spec_utils.reshape_sources(source[self.demucs_source_map[OTHER_STEM]], other_source)
source[self.demucs_source_map[OTHER_STEM]] = source_reshape
if (self.demucs_stems == ALL_STEMS and not self.process_data['is_ensemble_master']) or self.is_4_stem_ensemble:
self.cache_source(source)
for stem_name, stem_value in self.demucs_source_map.items():
if self.is_secondary_model_activated and not self.is_secondary_model and not stem_value >= 4:
if self.secondary_model_4_stem[stem_value]:
model_scale = self.secondary_model_4_stem_scale[stem_value]
stem_source_secondary = process_secondary_model(self.secondary_model_4_stem[stem_value], self.process_data, main_model_primary_stem_4_stem=stem_name, is_4_stem_demucs=True)
if isinstance(stem_source_secondary, np.ndarray):
stem_source_secondary = stem_source_secondary[1 if self.secondary_model_4_stem[stem_value].demucs_stem_count == 2 else stem_value]
stem_source_secondary = spec_utils.normalize(stem_source_secondary, self.is_normalization).T
elif type(stem_source_secondary) is dict:
stem_source_secondary = stem_source_secondary[stem_name]
stem_source_secondary = None if stem_value >= 4 else stem_source_secondary
self.write_to_console(f'{SAVING_STEM[0]}{stem_name}{SAVING_STEM[1]}') if not self.is_secondary_model else None
stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem_name}).wav')
stem_source = spec_utils.normalize(source[stem_value], self.is_normalization).T
self.write_audio(stem_path, stem_source, samplerate, secondary_model_source=stem_source_secondary, model_scale=model_scale)
if self.is_secondary_model:
return source
else:
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
if not self.is_secondary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(source[self.demucs_source_map[self.primary_stem]], self.is_normalization).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)
if not self.is_primary_stem_only:
def secondary_save(sec_stem_name, source, raw_mixture=None, is_inst_mixture=False):
secondary_source = self.secondary_source if not is_inst_mixture else None
self.write_to_console(f'{SAVING_STEM[0]}{sec_stem_name}{SAVING_STEM[1]}') if not self.is_secondary_model else None
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({sec_stem_name}).wav')
secondary_source_secondary = None
if not isinstance(secondary_source, np.ndarray):
if self.is_demucs_combine_stems:
source = list(source)
if is_inst_mixture:
source = [i for n, i in enumerate(source) if not n in [self.demucs_source_map[self.primary_stem], self.demucs_source_map[VOCAL_STEM]]]
else:
source.pop(self.demucs_source_map[self.primary_stem])
source = source[:len(source) - 2] if is_no_piano_guitar else source
secondary_source = np.zeros_like(source[0])
for i in source:
secondary_source += i
secondary_source = spec_utils.normalize(secondary_source, self.is_normalization).T
else:
if not isinstance(raw_mixture, np.ndarray):
raw_mixture = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs, is_missing_mix=True)
secondary_source, raw_mixture = spec_utils.normalize_two_stem(source[self.demucs_source_map[self.primary_stem]], raw_mixture, self.is_normalization)
if self.is_invert_spec:
secondary_source = spec_utils.invert_stem(raw_mixture, secondary_source)
else:
raw_mixture = spec_utils.reshape_sources(secondary_source, raw_mixture)
secondary_source = (-secondary_source.T+raw_mixture.T)
if not is_inst_mixture:
self.secondary_source = secondary_source
secondary_source_secondary = self.secondary_source_secondary
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, secondary_source, samplerate, secondary_source_secondary)
secondary_save(self.secondary_stem, source, raw_mixture=raw_mix)
if self.is_demucs_pre_proc_model_inst_mix and self.pre_proc_model and not self.is_4_stem_ensemble:
secondary_save(f"{self.secondary_stem} {INST_STEM}", source, raw_mixture=inst_raw_mix, is_inst_mixture=True)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
if self.is_secondary_model:
return secondary_sources
def demix_demucs(self, mix):
processed = {}
set_progress_bar = None if self.is_chunk_demucs else self.set_progress_bar
for nmix in mix:
self.progress_value += 1
self.set_progress_bar(0.1, (0.8/len(mix)*self.progress_value)) if self.is_chunk_demucs else None
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
mix_infer = cmix
with torch.no_grad():
if self.demucs_version == DEMUCS_V1:
sources = apply_model_v1(self.demucs,
mix_infer.to(self.device),
self.shifts,
self.is_split_mode,
set_progress_bar=set_progress_bar)
elif self.demucs_version == DEMUCS_V2:
sources = apply_model_v2(self.demucs,
mix_infer.to(self.device),
self.shifts,
self.is_split_mode,
self.overlap,
set_progress_bar=set_progress_bar)
else:
sources = apply_model(self.demucs,
mix_infer[None],
self.shifts,
self.is_split_mode,
self.overlap,
static_shifts=1 if self.shifts == 0 else self.shifts,
set_progress_bar=set_progress_bar,
device=self.device)[0]
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else self.margin_demucs
end = None if nmix == list(mix.keys())[::-1][0] else -self.margin_demucs
if self.margin_demucs == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
return sources
class SeperateVR(SeperateAttributes):
def seperate(self):
if self.primary_model_name == self.model_basename and self.primary_sources:
self.primary_source, self.secondary_source = self.load_cached_sources()
else:
self.start_inference()
if self.is_gpu_conversion >= 0:
if OPERATING_SYSTEM == 'Darwin':
device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
else:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
nn_arch_sizes = [
31191, # default
33966, 56817, 218409, 123821, 123812, 129605, 537238, 537227]
vr_5_1_models = [56817, 218409]
model_size = math.ceil(os.stat(self.model_path).st_size / 1024)
nn_architecture = min(nn_arch_sizes, key=lambda x:abs(x-model_size))
if nn_architecture in vr_5_1_models:
model = nets_new.CascadedNet(self.mp.param['bins'] * 2, nn_architecture)
inference = self.inference_vr_new
else:
model = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_architecture)
inference = self.inference_vr
model.load_state_dict(torch.load(self.model_path, map_location=device))
model.to(device)
self.running_inference()
y_spec, v_spec = inference(self.loading_mix(), device, model, self.aggressiveness)
self.write_to_console(DONE, base_text='')
del model
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
if not self.is_secondary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(self.spec_to_wav(y_spec), self.is_normalization).T
if not self.model_samplerate == 44100:
self.primary_source = librosa.resample(self.primary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, 44100, self.secondary_source_primary)
if not self.is_primary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.secondary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
if not isinstance(self.secondary_source, np.ndarray):
self.secondary_source = self.spec_to_wav(v_spec)
self.secondary_source = spec_utils.normalize(self.spec_to_wav(v_spec), self.is_normalization).T
if not self.model_samplerate == 44100:
self.secondary_source = librosa.resample(self.secondary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, self.secondary_source, 44100, self.secondary_source_secondary)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
if self.is_secondary_model:
return secondary_sources
def loading_mix(self):
X_wave, X_spec_s = {}, {}
bands_n = len(self.mp.param['band'])
for d in range(bands_n, 0, -1):
bp = self.mp.param['band'][d]
if OPERATING_SYSTEM == 'Darwin':
wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type']
else:
wav_resolution = bp['res_type']
if d == bands_n: # high-end band
X_wave[d], _ = librosa.load(self.audio_file, bp['sr'], False, dtype=np.float32, res_type=wav_resolution)
if not np.any(X_wave[d]) and self.audio_file.endswith('.mp3'):
X_wave[d] = rerun_mp3(self.audio_file, bp['sr'])
if X_wave[d].ndim == 1:
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution)
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'],
self.mp.param['mid_side_b2'], self.mp.param['reverse'])
if d == bands_n and self.high_end_process != 'none':
self.input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
self.input_high_end = X_spec_s[d][:, bp['n_fft']//2-self.input_high_end_h:bp['n_fft']//2, :]
X_spec = spec_utils.combine_spectrograms(X_spec_s, self.mp)
del X_wave, X_spec_s
return X_spec
def inference_vr(self, X_spec, device, model, aggressiveness):
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
model.eval()
total_iterations = sum([n_window]) if not self.is_tta else sum([n_window])*2
with torch.no_grad():
preds = []
for i in range(n_window):
self.progress_value +=1
self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + self.window_size]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
X_mag, X_phase = spec_utils.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness)
pred = pred[:, :, :n_frame]
if self.is_tta:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
pred, X_mag, X_phase = (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
else:
pred, X_mag, X_phase = pred * coef, X_mag, np.exp(1.j * X_phase)
if self.is_post_process:
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv, thres=self.post_process_threshold)
y_spec = pred * X_phase
v_spec = X_spec - y_spec
return y_spec, v_spec
def inference_vr_new(self, X_spec, device, model, aggressiveness):
def _execute(X_mag_pad, roi_size):
X_dataset = []
patches = (X_mag_pad.shape[2] - 2 * model.offset) // roi_size
total_iterations = patches//self.batch_size if not self.is_tta else (patches//self.batch_size)*2
for i in range(patches):
start = i * roi_size
X_mag_crop = X_mag_pad[:, :, start:start + self.crop_size]
X_dataset.append(X_mag_crop)
X_dataset = np.asarray(X_dataset)
model.eval()
with torch.no_grad():
mask = []
# To reduce the overhead, dataloader is not used.
for i in range(0, patches, self.batch_size):
self.progress_value += 1
if self.progress_value >= total_iterations:
self.progress_value = total_iterations
self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
X_batch = X_dataset[i: i + self.batch_size]
X_batch = torch.from_numpy(X_batch).to(device)
pred = model.predict_mask(X_batch)
pred = pred.detach().cpu().numpy()
pred = np.concatenate(pred, axis=2)
mask.append(pred)
mask = np.concatenate(mask, axis=2)
return mask
def postprocess(mask, X_mag, X_phase, aggressiveness):
if self.primary_stem == VOCAL_STEM:
mask = (1.0 - spec_utils.adjust_aggr(mask, True, aggressiveness))
else:
mask = spec_utils.adjust_aggr(mask, False, aggressiveness)
if self.is_post_process:
mask = spec_utils.merge_artifacts(mask)
y_spec = mask * X_mag * np.exp(1.j * X_phase)
v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
return y_spec, v_spec
X_mag, X_phase = spec_utils.preprocess(X_spec)
n_frame = X_mag.shape[2]
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.crop_size, model.offset)
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask = _execute(X_mag_pad, roi_size)
if self.is_tta:
pad_l += roi_size // 2
pad_r += roi_size // 2
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask_tta = _execute(X_mag_pad, roi_size)
mask_tta = mask_tta[:, :, roi_size // 2:]
mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5
else:
mask = mask[:, :, :n_frame]
y_spec, v_spec = postprocess(mask, X_mag, X_phase, aggressiveness)
return y_spec, v_spec
def spec_to_wav(self, spec):
if self.high_end_process.startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(self.high_end_process, spec, self.input_high_end, self.mp)
wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, self.input_high_end_h, input_high_end_)
else:
wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp)
return wav
def process_secondary_model(secondary_model: ModelData, process_data, main_model_primary_stem_4_stem=None, is_4_stem_demucs=False, main_process_method=None, is_pre_proc_model=False):
if not is_pre_proc_model:
process_iteration = process_data['process_iteration']
process_iteration()
if secondary_model.process_method == VR_ARCH_TYPE:
seperator = SeperateVR(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
if secondary_model.process_method == MDX_ARCH_TYPE:
seperator = SeperateMDX(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
if secondary_model.process_method == DEMUCS_ARCH_TYPE:
seperator = SeperateDemucs(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
secondary_sources = seperator.seperate()
if type(secondary_sources) is dict and not is_4_stem_demucs and not is_pre_proc_model:
return gather_sources(secondary_model.primary_model_primary_stem, STEM_PAIR_MAPPER[secondary_model.primary_model_primary_stem], secondary_sources)
else:
return secondary_sources
def gather_sources(primary_stem_name, secondary_stem_name, secondary_sources: dict):
source_primary = False
source_secondary = False
for key, value in secondary_sources.items():
if key in primary_stem_name:
source_primary = value
if key in secondary_stem_name:
source_secondary = value
return source_primary, source_secondary
def prepare_mix(mix, chunk_set, margin_set, mdx_net_cut=False, is_missing_mix=False):
audio_path = mix
samplerate = 44100
if not isinstance(mix, np.ndarray):
mix, samplerate = librosa.load(mix, mono=False, sr=44100)
else:
mix = mix.T
if not np.any(mix) and audio_path.endswith('.mp3'):
mix = rerun_mp3(audio_path)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
def get_segmented_mix(chunk_set=chunk_set):
segmented_mix = {}
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
return segmented_mix
if is_missing_mix:
return mix
else:
segmented_mix = get_segmented_mix()
raw_mix = get_segmented_mix(chunk_set=0) if mdx_net_cut else mix
return segmented_mix, raw_mix, samplerate
def rerun_mp3(audio_file, sample_rate=44100):
with audioread.audio_open(audio_file) as f:
track_length = int(f.duration)
return librosa.load(audio_file, duration=track_length, mono=False, sr=sample_rate)[0]
def save_format(audio_path, save_format, mp3_bit_set):
if not save_format == WAV:
if OPERATING_SYSTEM == 'Darwin':
FFMPEG_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ffmpeg')
pydub.AudioSegment.converter = FFMPEG_PATH
musfile = pydub.AudioSegment.from_wav(audio_path)
if save_format == FLAC:
audio_path_flac = audio_path.replace(".wav", ".flac")
musfile.export(audio_path_flac, format="flac")
if save_format == MP3:
audio_path_mp3 = audio_path.replace(".wav", ".mp3")
musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set)
try:
os.remove(audio_path)
except Exception as e:
print(e)