forked from snesrev/zelda3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzelda_cpu_infra.cpp
891 lines (739 loc) · 25.3 KB
/
zelda_cpu_infra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
// This file handles running zelda through the emulated cpu.
#include "zelda_cpu_infra.h"
#include "zelda_rtl.h"
#include "variables.h"
#include "misc.h"
#include "nmi.h"
#include "poly.h"
#include "attract.h"
#include "spc_player.h"
#include "snes/snes.h"
#include "snes/cpu.h"
#include "snes/cart.h"
#include "tracing.h"
#include <vector>
Snes *g_snes;
Cpu *g_cpu;
uint8 g_emulated_ram[0x20000];
void SaveLoadSlot(int cmd, int which);
//uint8 *GetPtr(uint32 addr) {
// Cart *cart = g_snes->cart;
// return &cart->rom[(((addr >> 16) << 15) | (addr & 0x7fff)) & (cart->romSize - 1)];
//}
//extern "C" uint8 *GetCartRamPtr(uint32 addr) {
// Cart *cart = g_snes->cart;
// return &cart->ram[addr];
//}
struct Snapshot {
uint16 a, x, y, sp, dp, pc;
uint8 k, db, flags;
uint8 ram[0x20000];
uint16 vram[0x8000];
uint16 sram[0x2000];
};
static Snapshot g_snapshot_mine, g_snapshot_theirs, g_snapshot_before;
static void MakeSnapshot(Snapshot *s) {
Cpu *c = g_cpu;
s->a = c->a, s->x = c->x, s->y = c->y;
s->sp = c->sp, s->dp = c->dp, s->db = c->db;
s->pc = c->pc, s->k = c->k;
s->flags = cpu_getFlags(c);
memcpy(s->ram, g_snes->ram, 0x20000);
memcpy(s->sram, g_snes->cart->ram, g_snes->cart->ramSize);
memcpy(s->vram, g_snes->ppu->vram, sizeof(uint16) * 0x8000);
}
static void MakeMySnapshot(Snapshot *s) {
memcpy(s->ram, g_zenv.ram, 0x20000);
memcpy(s->sram, g_zenv.sram, 0x2000);
memcpy(s->vram, g_zenv.ppu->vram, sizeof(uint16) * 0x8000);
}
static void RestoreMySnapshot(Snapshot *s) {
memcpy(g_zenv.ram, s->ram, 0x20000);
memcpy(g_zenv.sram, s->sram, 0x2000);
memcpy(g_zenv.ppu->vram, s->vram, sizeof(uint16) * 0x8000);
}
static void RestoreSnapshot(Snapshot *s) {
Cpu *c = g_cpu;
c->a = s->a, c->x = s->x, c->y = s->y;
c->sp = s->sp, c->dp = s->dp, c->db = s->db;
c->pc = s->pc, c->k = s->k;
cpu_setFlags(c, s->flags);
memcpy(g_snes->ram, s->ram, 0x20000);
memcpy(g_snes->cart->ram, s->sram, g_snes->cart->ramSize);
memcpy(g_snes->ppu->vram, s->vram, sizeof(uint16) * 0x8000);
}
static bool g_fail;
static void VerifySnapshotsEq(Snapshot *b, Snapshot *a, Snapshot *prev) {
memcpy(b->ram, a->ram, 16);
b->ram[0xfa1] = a->ram[0xfa1];
b->ram[0x72] = a->ram[0x72];
b->ram[0x73] = a->ram[0x73];
b->ram[0x74] = a->ram[0x74];
b->ram[0x75] = a->ram[0x75];
b->ram[0xb7] = a->ram[0xb7];
b->ram[0xb8] = a->ram[0xb8];
b->ram[0xb9] = a->ram[0xb9];
b->ram[0xba] = a->ram[0xba];
b->ram[0xbb] = a->ram[0xbb];
b->ram[0xbd] = a->ram[0xbd];
b->ram[0xbe] = a->ram[0xbe];
b->ram[0xc8] = a->ram[0xc8];
b->ram[0xc9] = a->ram[0xc9];
b->ram[0xca] = a->ram[0xca];
b->ram[0xcb] = a->ram[0xcb];
b->ram[0xcc] = a->ram[0xcc];
b->ram[0xcd] = a->ram[0xcd];
b->ram[0xa0] = a->ram[0xa0];
b->ram[0x128] = a->ram[0x128]; // irq_flag
b->ram[0x463] = a->ram[0x463]; // which_staircase_index_padding
memcpy(&b->ram[0x1f0d], &a->ram[0x1f0d], 0x3f - 0xd);
memcpy(b->ram + 0x138, a->ram + 0x138, 256 - 0x38); // copy the stack over
if (memcmp(b->ram, a->ram, 0x20000)) {
fprintf(stderr, "@%d: Memory compare failed (mine != theirs, prev):\n", frame_counter);
int j = 0;
for (size_t i = 0; i < 0x20000; i++) {
if (a->ram[i] != b->ram[i]) {
if (++j < 128) {
if ((i&1) == 0 && a->ram[i + 1] != b->ram[i + 1]) {
fprintf(stderr, "0x%.6X: %.4X != %.4X (%.4X)\n", (int)i,
WORD(b->ram[i]), WORD(a->ram[i]), WORD(prev->ram[i]));
i++, j++;
} else {
fprintf(stderr, "0x%.6X: %.2X != %.2X (%.2X)\n", (int)i, b->ram[i], a->ram[i], prev->ram[i]);
}
}
}
}
if (j)
g_fail = true;
fprintf(stderr, " total of %d failed bytes\n", (int)j);
}
if (memcmp(b->sram, a->sram, 0x2000)) {
fprintf(stderr, "@%d: SRAM compare failed (mine != theirs, prev):\n", frame_counter);
int j = 0;
for (size_t i = 0; i < 0x2000; i++) {
if (a->sram[i] != b->sram[i]) {
if (++j < 128) {
if ((i&1) == 0 && a->sram[i + 1] != b->sram[i + 1]) {
fprintf(stderr, "0x%.6X: %.4X != %.4X (%.4X)\n", (int)i,
WORD(b->sram[i]), WORD(a->sram[i]), WORD(prev->sram[i]));
i++, j++;
} else {
fprintf(stderr, "0x%.6X: %.2X != %.2X (%.2X)\n", (int)i, b->sram[i], a->sram[i], prev->sram[i]);
}
}
}
}
if (j)
g_fail = true;
fprintf(stderr, " total of %d failed bytes\n", (int)j);
}
if (memcmp(b->vram, a->vram, sizeof(uint16) * 0x8000)) {
fprintf(stderr, "@%d: VRAM compare failed (mine != theirs, prev):\n", frame_counter);
for (size_t i = 0, j = 0; i < 0x8000; i++) {
if (a->vram[i] != b->vram[i]) {
fprintf(stderr, "0x%.6X: %.4X != %.4X (%.4X)\n", (int)i, b->vram[i], a->vram[i], prev->vram[i]);
g_fail = true;
if (++j >= 16)
break;
}
}
}
}
static uint8_t *RomByte(Cart *cart, uint32_t addr) {
return &cart->rom[(((addr >> 16) << 15) | (addr & 0x7fff)) & (cart->romSize - 1)];
}
void SetSnes(Snes *snes) {
g_snes = snes;
g_cpu = snes->cpu;
}
bool g_calling_asm_from_c;
void HookedFunctionRts(int is_long) {
if (g_calling_asm_from_c) {
g_calling_asm_from_c = false;
return;
}
assert(0);
}
void RunEmulatedFunc(uint32 pc, uint16 a, uint16 x, uint16 y, bool mf, bool xf, int b, int whatflags) {
g_snes->debug_cycles = 1;
RunEmulatedFuncSilent(pc, a, x, y, mf, xf, b, whatflags | 2);
g_snes->debug_cycles = 0;
}
void RunEmulatedFuncSilent(uint32 pc, uint16 a, uint16 x, uint16 y, bool mf, bool xf, int b, int whatflags) {
uint16 org_sp = g_cpu->sp;
uint16 org_pc = g_cpu->pc;
uint8 org_b = g_cpu->db;
uint8 org_dp = g_cpu->dp;
if (b != -1)
g_cpu->db = b >= 0 ? b : pc >> 16;
if (b == -3)
g_cpu->dp = 0x1f00;
static uint8 *rambak;
if (rambak == 0) rambak = (uint8 *)malloc(0x20000);
memcpy(rambak, g_emulated_ram, 0x20000);
memcpy(g_emulated_ram, g_ram, 0x20000);
if (whatflags & 2)
g_emulated_ram[0x1ffff] = 0x67;
g_cpu->a = a;
g_cpu->x = x;
g_cpu->y = y;
g_cpu->spBreakpoint = g_cpu->sp;
g_cpu->k = (pc >> 16);
g_cpu->pc = (pc & 0xffff);
g_cpu->mf = mf;
g_cpu->xf = xf;
g_calling_asm_from_c = true;
while (g_calling_asm_from_c) {
if (g_snes->debug_cycles) {
char line[80];
getProcessorStateCpu(g_snes, line);
puts(line);
}
cpu_runOpcode(g_cpu);
while (g_snes->dma->dmaBusy)
dma_doDma(g_snes->dma);
if (whatflags & 1) {
/* if (apu_debugging == 2 && g_snes->apu->cpuCyclesLeft == 0) {
char line[80];
getProcessorStateSpc(g_snes->apu, line);
puts(line);
}*/
// apu_cycle(g_snes->apu);
}
}
g_cpu->dp = org_dp;
g_cpu->sp = org_sp;
g_cpu->db = org_b;
g_cpu->pc = org_pc;
memcpy(g_ram, g_emulated_ram, 0x20000);
memcpy(g_emulated_ram, rambak, 0x20000);
}
void RunOrigAsmCodeOneLoop(Snes *snes) {
// Run until the wait loop in Interrupt_Reset,
// Or the polyhedral main function.
for(int loops = 0;;loops++) {
snes_printCpuLine(snes);
cpu_runOpcode(snes->cpu);
while (snes->dma->dmaBusy)
dma_doDma(snes->dma);
uint32_t pc = snes->cpu->k << 16 | snes->cpu->pc;
if (pc == 0x8034 || pc == 0x9f81d && loops >= 10)
break;
}
}
void RunEmulatedSnesFrame(Snes *snes) {
// First call runs until init
if (snes->cpu->pc == 0x8000 && snes->cpu->k == 0) {
RunOrigAsmCodeOneLoop(snes);
g_emulated_ram[0x12] = 1;
// Fixup uninitialized variable
*(uint16*)(g_emulated_ram+0xAE0) = 0xb280;
*(uint16*)(g_emulated_ram+0xAE2) = 0xb280 + 0x60;
}
RunOrigAsmCodeOneLoop(snes);
snes_doAutoJoypad(snes);
// animated_tile_vram_addr uninited
if (snes->ram[0xadd] == 0)
*(uint16_t*)&snes->ram[0xadc] = 0xa680;
// In one code path flag_update_hud_in_nmi uses an undefined value
snes_write(snes, DMAP0, 0x01);
snes_write(snes, BBAD0, 0x18);
snes->cpu->nmiWanted = true;
for (;;) {
snes_printCpuLine(snes);
cpu_runOpcode(snes->cpu);
while (snes->dma->dmaBusy)
dma_doDma(snes->dma);
uint32_t pc = snes->cpu->k << 16 | snes->cpu->pc;
if (pc == 0x8039 || pc == 0x9f81d)
break;
}
}
struct Ppu *GetPpuForRendering() {
return g_zenv.ppu;
}
Dsp *GetDspForRendering() {
SpcPlayer_GenerateSamples(g_zenv.player);
return g_zenv.player->dsp;
}
void saveFunc(void *ctx, void *data, size_t data_size) {
std::vector<uint8> *vec = (std::vector<uint8> *)ctx;
vec->resize(vec->size() + data_size);
memcpy(vec->data() + vec->size() - data_size, data, data_size);
}
struct LoadFuncState {
uint8 *p, *pend;
};
void loadFunc(void *ctx, void *data, size_t data_size) {
LoadFuncState *st = (LoadFuncState *)ctx;
assert(st->pend - st->p >= data_size);
memcpy(data, st->p, data_size);
st->p += data_size;
}
void CopyStateAfterSnapshotRestore(bool is_reset) {
memcpy(g_zenv.ram, g_snes->ram, 0x20000);
memcpy(g_zenv.sram, g_snes->cart->ram, g_snes->cart->ramSize);
memcpy(g_zenv.ppu->vram, &g_snes->ppu->vram, offsetof(Ppu, pixelBuffer) - offsetof(Ppu, vram));
memcpy(g_zenv.player->ram, g_snes->apu->ram, sizeof(g_snes->apu->ram));
if (!is_reset) {
memcpy(g_zenv.player->dsp->ram, g_snes->apu->dsp->ram, sizeof(Dsp) - offsetof(Dsp, ram));
SpcPlayer_CopyVariablesFromRam(g_zenv.player);
}
memcpy(g_zenv.dma->channel, g_snes->dma->channel, sizeof(Dma) - offsetof(Dma, channel));
g_zenv.player->timer_cycles = 0;
if (!is_reset) {
// Setup some fake cpu state cause we can't depend on the savegame's
Cpu *cpu = g_snes->cpu;
cpu->a = cpu->x = cpu->y = 0;
cpu->pc = 0x8034;
cpu->sp = 0x1ff;
cpu->k = cpu->dp = cpu->db = 0;
cpu_setFlags(cpu, 0x30);
cpu->irqWanted = cpu->nmiWanted = cpu->waiting = cpu->stopped = 0;
cpu->e = false;
if (thread_other_stack == 0x1f2) {
cpu->sp = 0x1f3e;
cpu->pc = 0xf81d;
cpu->db = cpu->k = 9;
cpu->dp = 0x1f00;
static const uint8 kStackInit[] = { 0x82, 0, 0, 0, 0, 0, 0, 0, 0x40, 0xb7, 0xb0, 0x34, 0x80, 0 };
memcpy(g_snes->ram + 0x1f2, kStackInit, sizeof(kStackInit));
}
}
}
std::vector<uint8> SaveSnesState() {
std::vector<uint8> data;
MakeSnapshot(&g_snapshot_before);
// Copy from my state into the emulator
memcpy(&g_snes->ppu->vram, g_zenv.ppu->vram, offsetof(Ppu, pixelBuffer) - offsetof(Ppu, vram));
memcpy(g_snes->ram, g_zenv.ram, 0x20000);
memcpy(g_snes->cart->ram, g_zenv.sram, 0x2000);
SpcPlayer_CopyVariablesToRam(g_zenv.player);
memcpy(g_snes->apu->ram, g_zenv.player->ram, 0x10000);
memcpy(g_snes->apu->dsp->ram, g_zenv.player->dsp->ram, sizeof(Dsp) - offsetof(Dsp, ram));
memcpy(g_snes->dma->channel, g_zenv.dma->channel, sizeof(Dma) - offsetof(Dma, channel));
snes_saveload(g_snes, &saveFunc, &data);
RestoreSnapshot(&g_snapshot_before);
return data;
}
class StateRecorder {
public:
StateRecorder() : last_inputs_(0), frames_since_last_(0), total_frames_(0), replay_mode_(false) {}
void Record(uint16 inputs);
void RecordPatchByte(uint32 addr, const uint8 *value, int num);
void Load(FILE *f, bool replay_mode);
void Save(FILE *f);
uint16 ReadNextReplayState();
bool is_replay_mode() { return replay_mode_; }
void MigrateToBaseSnapshot();
private:
void RecordJoypadBit(int command);
void AppendByte(uint8 v);
void AppendVl(uint32 v);
uint16 last_inputs_;
uint32 frames_since_last_;
uint32 total_frames_;
// For replay
uint32 replay_pos_, replay_frame_counter_, replay_next_cmd_at_;
uint8 replay_cmd_;
bool replay_mode_;
std::vector<uint8> log_;
std::vector<uint8> base_snapshot_;
};
uint32 RamChecksum() {
uint64_t cksum = 0, cksum2 = 0;
for (int i = 0; i < 0x20000; i += 4) {
cksum += *(uint32 *)&g_ram[i];
cksum2 += cksum;
}
return cksum ^ (cksum >> 32) ^ cksum2 ^ (cksum2 >> 32);
}
void StateRecorder::AppendByte(uint8 v) {
log_.push_back(v);
printf("%.2x ", v);
}
void StateRecorder::AppendVl(uint32 v) {
for (; v >= 255; v -= 255)
AppendByte(255);
AppendByte(v);
}
void StateRecorder::RecordJoypadBit(int command) {
int frames = frames_since_last_;
AppendByte(command << 4 | (frames < 15 ? frames : 15));
if (frames >= 15)
AppendVl(frames - 15);
frames_since_last_ = 0;
}
void StateRecorder::Record(uint16 inputs) {
uint16 diff = inputs ^ last_inputs_;
if (diff != 0) {
last_inputs_ = inputs;
printf("0x%.4x %d: ", diff, frames_since_last_);
for (int i = 0; i < 12; i++) {
if ((diff >> i) & 1)
RecordJoypadBit(i);
}
printf("\n");
}
frames_since_last_++;
total_frames_++;
}
void StateRecorder::RecordPatchByte(uint32 addr, const uint8 *value, int num) {
assert(addr < 0x20000);
printf("%d: PatchByte(0x%x, 0x%x. %d): ", frames_since_last_, addr, *value, num);
int frames = frames_since_last_;
int lq = (num - 1) <= 3 ? (num - 1) : 3;
AppendByte(0xc0 | (frames != 0 ? 1 : 0) | (addr & 0x10000 ? 2 : 0) | lq << 2);
if (frames != 0)
AppendVl(frames - 1);
if (lq == 3)
AppendVl(num - 1 - 3);
frames_since_last_ = 0;
AppendByte(addr >> 8);
AppendByte(addr);
for(int i = 0; i < num; i++)
AppendByte(value[i]);
printf("\n");
}
void StateRecorder::Load(FILE *f, bool replay_mode) {
uint32 hdr[8] = { 0 };
fread(hdr, 8, 4, f);
assert(hdr[0] == 1);
total_frames_ = hdr[1];
log_.resize(hdr[2]);
fread(log_.data(), 1, hdr[2], f);
last_inputs_ = hdr[3];
frames_since_last_ = hdr[4];
base_snapshot_.resize((hdr[5] & 1) ? hdr[6] : 0);
fread(base_snapshot_.data(), 1, base_snapshot_.size(), f);
bool is_reset = false;
replay_mode_ = replay_mode;
if (replay_mode) {
replay_next_cmd_at_ = frames_since_last_ = 0;
last_inputs_ = 0;
replay_pos_ = 0;
replay_frame_counter_ = 0;
replay_cmd_ = 0xff;
// Load snapshot from |base_snapshot_|, or reset if empty.
if (base_snapshot_.size()) {
LoadFuncState state = { base_snapshot_.data(), base_snapshot_.data() + base_snapshot_.size() };
snes_saveload(g_snes, &loadFunc, &state);
assert(state.p == state.pend);
} else {
snes_reset(g_snes, true);
SpcPlayer_Initialize(g_zenv.player);
is_reset = true;
}
} else {
std::vector<uint8> data;
data.resize(hdr[6]);
fread(data.data(), 1, data.size(), f);
LoadFuncState state = { data.data(), data.data() + data.size() };
snes_saveload(g_snes, &loadFunc, &state);
assert(state.p == state.pend);
}
CopyStateAfterSnapshotRestore(is_reset);
}
void StateRecorder::Save(FILE *f) {
uint32 hdr[8] = { 0 };
std::vector<uint8> data = SaveSnesState();
assert(base_snapshot_.size() == 0 || base_snapshot_.size() == data.size());
hdr[0] = 1;
hdr[1] = total_frames_;
hdr[2] = log_.size();
hdr[3] = last_inputs_;
hdr[4] = frames_since_last_;
hdr[5] = (base_snapshot_.size() ? 1 : 0);
hdr[6] = data.size();
fwrite(hdr, 8, 4, f);
fwrite(log_.data(), 1, log_.size(), f);
fwrite(base_snapshot_.data(), 1, base_snapshot_.size(), f);
fwrite(data.data(), 1, data.size(), f);
}
void StateRecorder::MigrateToBaseSnapshot() {
printf("Migrating to base snapshot!\n");
std::vector<uint8> data = SaveSnesState();
base_snapshot_ = std::move(data);
replay_mode_ = false;
frames_since_last_ = 0;
last_inputs_ = 0;
total_frames_ = 0;
log_.clear();
}
uint16 StateRecorder::ReadNextReplayState() {
assert(replay_mode_);
while (frames_since_last_ >= replay_next_cmd_at_) {
frames_since_last_ = 0;
// Apply next command
if (replay_cmd_ != 0xff) {
if (replay_cmd_ < 0xc0) {
last_inputs_ ^= 1 << (replay_cmd_ >> 4);
} else if (replay_cmd_ < 0xd0) {
int nb = 1 + ((replay_cmd_ >> 2) & 3);
uint8 t;
if (nb == 4) do {
nb += t = log_[replay_pos_++];
} while (t == 255);
uint32 addr = ((replay_cmd_ >> 1) & 1) << 16;
addr |= log_[replay_pos_++] << 8;
addr |= log_[replay_pos_++];
do {
g_emulated_ram[addr & 0x1ffff] = g_ram[addr & 0x1ffff] = log_[replay_pos_++];
} while (addr++, --nb);
} else {
assert(0);
}
}
if (replay_pos_ >= log_.size()) {
replay_cmd_ = 0xff;
replay_next_cmd_at_ = 0xffffffff;
break;
}
// Read the next one
uint8 cmd = log_[replay_pos_++], t;
int mask = (cmd < 0xc0) ? 0xf : 0x1;
int frames = cmd & mask;
if (frames == mask) do {
frames += t = log_[replay_pos_++];
} while (t == 255);
replay_next_cmd_at_ = frames;
replay_cmd_ = cmd;
}
frames_since_last_++;
// Turn off replay mode after we reached the final frame position
if (++replay_frame_counter_ >= total_frames_) {
replay_mode_ = false;
}
return last_inputs_;
}
StateRecorder input_recorder;
static int frame_ctr;
bool RunOneFrame(Snes *snes, int input_state, bool turbo) {
frame_ctr++;
if (kIsOrigEmu) {
snes_runFrame(snes);
return false;
}
// Either copy state or apply state
if (input_recorder.is_replay_mode()) {
input_state = input_recorder.ReadNextReplayState();
} else {
input_recorder.Record(input_state);
turbo = false;
// This is whether APUI00 is true or false, this is used by the ancilla code.
uint8 apui00 = g_zenv.player->port_to_snes[0] != 0;
if (apui00 != g_ram[0x648]) {
g_emulated_ram[0x648] = g_ram[0x648] = apui00;
input_recorder.RecordPatchByte(0x648, &apui00, 1);
}
}
if (snes == NULL) {
ZeldaRunFrame(input_state);
return turbo;
}
MakeSnapshot(&g_snapshot_before);
MakeMySnapshot(&g_snapshot_mine);
MakeSnapshot(&g_snapshot_theirs);
// Compare both snapshots
VerifySnapshotsEq(&g_snapshot_mine, &g_snapshot_theirs, &g_snapshot_before);
if (g_fail) {
printf("early fail\n");
return turbo;
}
again:
// Run orig version then snapshot
snes->input1->currentState = input_state;
RunEmulatedSnesFrame(snes);
MakeSnapshot(&g_snapshot_theirs);
// Run my version and snapshot
again_mine:
ZeldaRunFrame(input_state);
MakeMySnapshot(&g_snapshot_mine);
// Compare both snapshots
VerifySnapshotsEq(&g_snapshot_mine, &g_snapshot_theirs, &g_snapshot_before);
if (g_fail) {
g_fail = false;
RestoreMySnapshot(&g_snapshot_before);
// RestoreSnapshot(&g_snapshot_before);
//SaveLoadSlot(kSaveLoad_Save, 0);
goto again_mine;
}
return turbo;
}
void PatchRomBP(uint8_t *rom, uint32_t addr) {
rom[(addr >> 16) << 15 | (addr & 0x7fff)] = 0;
}
void PatchRom(uint8_t *rom) {
// fix a bug with unitialized memory
{
uint8_t *p = rom + 0x36434;
memmove(p, p + 2, 7);
p[7] = 0xb0;
p[8] = 0x40 - 7;
}
// BufferAndBuildMap16Stripes_Y can read bad memory if int is negative
if (1) {
uint8_t *p = rom + 0x10000 - 0x8000;
int thunk = 0xFF6E;
uint8_t *tp = p + thunk;
*tp++ = 0xc0; *tp++ = 0x00; *tp++ = 0x20;
*tp++ = 0x90; *tp++ = 0x03;
*tp++ = 0xa9; *tp++ = 0x00; *tp++ = 0x00;
*tp++ = 0x9d; *tp++ = 0x00; *tp++ = 0x05;
*tp++ = 0x60;
p[0xf4a7] = 0x20; p[0xf4a8] = thunk; p[0xf4a9] = thunk >> 8;
p[0xf4b5] = 0x20; p[0xf4b6] = thunk; p[0xf4b7] = thunk >> 8;
p[0xf3dd] = 0x20; p[0xf3de] = thunk; p[0xf3df] = thunk >> 8;
p[0xf3ef] = 0x20; p[0xf3f0] = thunk; p[0xf3f1] = thunk >> 8;
}
// Better random numbers
if (1) {
// 8D:FFC1 new_random_gen:
int new_routine = 0xffc1;
uint8_t *p = rom + 0x60000, *tp = p + new_routine;
*tp++ = 0xad; *tp++ = 0xa1; *tp++ = 0x0f; // mov.b A, byte_7E0FA1
*tp++ = 0x18; *tp++ = 0x65; *tp++ = 0x1a; // add.b A, frame_counter
*tp++ = 0x4a; // lsr A
*tp++ = 0xb0; *tp++ = 0x02; // jnb loc_8DFFCC
*tp++ = 0x49; *tp++ = 0xb8; // eor.b A, #0xB8
*tp++ = 0x8d; *tp++ = 0xa1; *tp++ = 0x0f; // byte_7E0FA1, A
*tp++ = 0x18; // clc
*tp++ = 0x6b; // retf
p[0xBA71] = 0x4c; p[0xBA72] = new_routine; p[0xBA73] = new_routine >> 8;
}
{
}
// Fix so SmashRockPile_fromLift / Overworld_DoMapUpdate32x32_B preserves R2/R0 destroyed
{
/*
.9B:BFA2 A5 00 mov.w A, R0
.9B:BFA4 48 push A
.9B:BFA5 A5 02 mov.w A, R2
.9B:BFA7 48 push A
.9B:C0F1 22 5C AD 02 callf Overworld_DoMapUpdate32x32_B
.9B:C048 68 pop A
.9B:C049 85 00 mov.w R0, A
.9B:C04B 68 pop A
.9B:C04C 85 02 mov.w R2, A
*/
uint8_t *tp = rom + 0x6ffd8;
*tp++ = 0xa5; *tp++ = 0x00; *tp++ = 0x48;
*tp++ = 0xa5; *tp++ = 0x02; *tp++ = 0x48;
*tp++ = 0x22; *tp++ = 0x5c; *tp++ = 0xad; *tp++ = 0x02;
*tp++ = 0xc2; *tp++ = 0x30;
*tp++ = 0x68; *tp++ = 0x85; *tp++ = 0x02;
*tp++ = 0x68; *tp++ = 0x85; *tp++ = 0x00;
*tp++ = 0x6b;
int target = 0xDFFD8; // DoorAnim_DoWork2_Preserving
rom[0xdc0f2] = target;
rom[0xdc0f3] = target >> 8;
rom[0xdc0f4] = target >> 16;
}
rom[0x2dec7] = 0; // Fix Uncle_Embark reading bad ram
rom[0x4be5e] = 0; // Overlord05_FallingStalfos doesn't initialize the sprite_D memory location
rom[0xD79A4] = 0; // 0x1AF9A4: // Lanmola_SpawnShrapnel uses undefined carry value
rom[0xF0A46] = 0; // 0x1E8A46 Helmasaur Carry Junk
rom[0xF0A52] = 0; // 0x1E8A52 Helmasaur Carry Junk
rom[0xef9b9] = 0xb9; // TalkingTree_SpitBomb
rom[0xdf107] = 0xa2;
rom[0xdf108] = 0x03;
rom[0xdf109] = 0x6b; // Palette_AgahnimClone destoys X
rom[0x4a966] = 0; // Follower_AnimateMovement_preserved
PatchRomBP(rom, 0x1de0e5);
PatchRomBP(rom, 0x6d0b6);
PatchRomBP(rom, 0x6d0c6);
PatchRomBP(rom, 0x1d8f29); // adc instead of add
PatchRomBP(rom, 0x06ED0B);
PatchRomBP(rom, 0x1dc812); // adc instead of add
PatchRomBP(rom, 0x9b46c); // adc instead of add
PatchRomBP(rom, 0x9b478); // adc instead of add
PatchRomBP(rom, 0x9B468); // sbc
PatchRomBP(rom, 0x9B46A);
PatchRomBP(rom, 0x9B474);
PatchRomBP(rom, 0x9B476);
PatchRomBP(rom, 0x9B60C);
PatchRomBP(rom, 0x8f708); // don't init scratch_c
PatchRomBP(rom, 0x1DCDEB); // y is destroyed earlier, restore it..
// Smithy_Frog doesn't save X
memmove(rom + 0x332b8, rom + 0x332b7, 4); rom[0x332b7] = 0xfa;
// This needs to be here because the ancilla code reads
// from the apu and we don't want to make the core code
// dependent on the apu timings, so relocated this value
// to 0x648.
rom[0x443fe] = 0x48; rom[0x443ff] = 0x6;
rom[0x44607] = 0x48; rom[0x44608] = 0x6;
// AncillaAdd_AddAncilla_Bank09 destroys R14
rom[0x49d0c] = 0xda; rom[0x49d0d] = 0xfa;
rom[0x49d0f] = 0xda; rom[0x49d10] = 0xfa;
}
static const char *const kReferenceSaves[] = {
"Chapter 1 - Zelda's Rescue.sav",
"Chapter 2 - After Eastern Palace.sav",
"Chapter 3 - After Desert Palace.sav",
"Chapter 4 - After Tower of Hera.sav",
"Chapter 5 - After Hyrule Castle Tower.sav",
"Chapter 6 - After Dark Palace.sav",
"Chapter 7 - After Swamp Palace.sav",
"Chapter 8 - After Skull Woods.sav",
"Chapter 9 - After Gargoyle's Domain.sav",
"Chapter 10 - After Ice Palace.sav",
"Chapter 11 - After Misery Mire.sav",
"Chapter 12 - After Turtle Rock.sav",
"Chapter 13 - After Ganon's Tower.sav",
};
void SaveLoadSlot(int cmd, int which) {
char name[128];
if (which & 256) {
if (cmd == kSaveLoad_Save)
return;
sprintf(name, "saves/ref/%s", kReferenceSaves[which - 256]);
} else {
sprintf(name, "saves/save%d.sav", which);
}
FILE *f = fopen(name, cmd != kSaveLoad_Save ? "rb" : "wb");
if (f) {
printf("*** %s slot %d\n",
cmd==kSaveLoad_Save ? "Saving" : cmd==kSaveLoad_Load ? "Loading" : "Replaying", which);
if (cmd != kSaveLoad_Save)
input_recorder.Load(f, cmd == kSaveLoad_Replay);
else
input_recorder.Save(f);
fclose(f);
}
}
class PatchRamByteBatch {
public:
PatchRamByteBatch() : count_(0), addr_(0) {}
~PatchRamByteBatch();
void Patch(uint32 addr, uint8 value);
private:
uint32 count_, addr_;
uint8 vals_[256];
};
PatchRamByteBatch::~PatchRamByteBatch() {
if (count_)
input_recorder.RecordPatchByte(addr_, vals_, count_);
}
void PatchRamByteBatch::Patch(uint32 addr, uint8 value) {
if (count_ >= 256 || addr != addr_ + count_) {
if (count_)
input_recorder.RecordPatchByte(addr_, vals_, count_);
addr_ = addr;
count_ = 0;
}
vals_[count_++] = value;
g_emulated_ram[addr] = g_ram[addr] = value;
}
void PatchCommand(char c) {
PatchRamByteBatch b;
if (c == 'w') {
b.Patch(0xf372, 80); // health filler
b.Patch(0xf373, 80); // magic filler
// b.Patch(0x1FE01, 25);
} else if (c == 'k') {
input_recorder.MigrateToBaseSnapshot();
} else if (c == 'o') {
b.Patch(0xf36f, 1);
}
}