From 09837f53361789131312979a725a0229460a4ab5 Mon Sep 17 00:00:00 2001 From: Fredrik Bakke Date: Fri, 20 Oct 2023 17:17:09 +0200 Subject: [PATCH] rename axioms --- src/foundation-core/sets.lagda.md | 17 +++++++----- src/foundation-core/univalence.lagda.md | 26 ++++++++++++------- src/foundation/preunivalence.lagda.md | 25 +++++++++++------- src/foundation/univalence.lagda.md | 2 +- ...universal-property-identity-types.lagda.md | 8 +++--- 5 files changed, 47 insertions(+), 31 deletions(-) diff --git a/src/foundation-core/sets.lagda.md b/src/foundation-core/sets.lagda.md index 5ce7e3374c..cecd9e33de 100644 --- a/src/foundation-core/sets.lagda.md +++ b/src/foundation-core/sets.lagda.md @@ -55,11 +55,14 @@ module _ ### A type is a set if and only if it satisfies Streicher's axiom K ```agda -statement-axiom-K : {l : Level} → UU l → UU l -statement-axiom-K A = (x : A) (p : x = x) → refl = p +instance-axiom-K : {l : Level} → UU l → UU l +instance-axiom-K A = (x : A) (p : x = x) → refl = p -axiom-K : (l : Level) → UU (lsuc l) -axiom-K l = (A : UU l) → statement-axiom-K A +axiom-K-Level : (l : Level) → UU (lsuc l) +axiom-K-Level l = (A : UU l) → instance-axiom-K A + +axiom-K : UUω +axiom-K = {l : Level} → axiom-K-Level l module _ {l : Level} {A : UU l} @@ -67,16 +70,16 @@ module _ abstract is-set-axiom-K' : - statement-axiom-K A → (x y : A) → all-elements-equal (x = y) + instance-axiom-K A → (x y : A) → all-elements-equal (x = y) is-set-axiom-K' K x .x refl q with K x q ... | refl = refl abstract - is-set-axiom-K : statement-axiom-K A → is-set A + is-set-axiom-K : instance-axiom-K A → is-set A is-set-axiom-K H x y = is-prop-all-elements-equal (is-set-axiom-K' H x y) abstract - axiom-K-is-set : is-set A → statement-axiom-K A + axiom-K-is-set : is-set A → instance-axiom-K A axiom-K-is-set H x p = ( inv (contraction (is-proof-irrelevant-is-prop (H x x) refl) refl)) ∙ ( contraction (is-proof-irrelevant-is-prop (H x x) refl) p) diff --git a/src/foundation-core/univalence.lagda.md b/src/foundation-core/univalence.lagda.md index 3bc7bb2cd1..8bceae69f9 100644 --- a/src/foundation-core/univalence.lagda.md +++ b/src/foundation-core/univalence.lagda.md @@ -39,11 +39,17 @@ equiv-eq refl = id-equiv map-eq : {l : Level} {A : UU l} {B : UU l} → A = B → A → B map-eq = map-equiv ∘ equiv-eq -statement-univalence : {l : Level} (A B : UU l) → UU (lsuc l) -statement-univalence A B = is-equiv (equiv-eq {A = A} {B = B}) +instance-univalence : {l : Level} (A B : UU l) → UU (lsuc l) +instance-univalence A B = is-equiv (equiv-eq {A = A} {B = B}) -axiom-univalence : (l : Level) → UU (lsuc l) -axiom-univalence l = (A B : UU l) → statement-univalence A B +axiom-based-univalence : {l : Level} (A : UU l) → UU (lsuc l) +axiom-based-univalence {l} A = (B : UU l) → instance-univalence A B + +axiom-univalence-Level : (l : Level) → UU (lsuc l) +axiom-univalence-Level l = (A B : UU l) → instance-univalence A B + +axiom-univalence : UUω +axiom-univalence = {l : Level} → axiom-univalence-Level l ``` ## Properties @@ -52,10 +58,10 @@ axiom-univalence l = (A B : UU l) → statement-univalence A B ```agda abstract - is-contr-total-equiv-univalence : + is-contr-total-equiv-based-univalence : {l : Level} (A : UU l) → - ((B : UU l) → statement-univalence A B) → is-contr (Σ (UU l) (A ≃_)) - is-contr-total-equiv-univalence A UA = + axiom-based-univalence A → is-contr (Σ (UU l) (A ≃_)) + is-contr-total-equiv-based-univalence A UA = fundamental-theorem-id' (λ B → equiv-eq) UA ``` @@ -63,10 +69,10 @@ abstract ```agda abstract - univalence-is-contr-total-equiv : + based-univalence-is-contr-total-equiv : {l : Level} (A : UU l) → - is-contr (Σ (UU l) (A ≃_)) → (B : UU l) → statement-univalence A B - univalence-is-contr-total-equiv A c = + is-contr (Σ (UU l) (A ≃_)) → axiom-based-univalence A + based-univalence-is-contr-total-equiv A c = fundamental-theorem-id c (λ B → equiv-eq) ``` diff --git a/src/foundation/preunivalence.lagda.md b/src/foundation/preunivalence.lagda.md index a5027d3ee2..aee63e5691 100644 --- a/src/foundation/preunivalence.lagda.md +++ b/src/foundation/preunivalence.lagda.md @@ -32,21 +32,27 @@ K imply preunivalence. ## Definition ```agda -statement-preunivalence : {l : Level} (X Y : UU l) → UU (lsuc l) -statement-preunivalence X Y = is-emb (equiv-eq {A = X} {B = Y}) +instance-preunivalence : {l : Level} (X Y : UU l) → UU (lsuc l) +instance-preunivalence X Y = is-emb (equiv-eq {A = X} {B = Y}) -axiom-preunivalence : (l : Level) → UU (lsuc l) -axiom-preunivalence l = (X Y : UU l) → statement-preunivalence X Y +axiom-based-preunivalence : {l : Level} (X : UU l) → UU (lsuc l) +axiom-based-preunivalence {l} X = (Y : UU l) → instance-preunivalence X Y + +axiom-preunivalence-Level : (l : Level) → UU (lsuc l) +axiom-preunivalence-Level l = (X Y : UU l) → instance-preunivalence X Y + +axiom-preunivalence : UUω +axiom-preunivalence = {l : Level} → axiom-preunivalence-Level l emb-preunivalence : - {l : Level} → axiom-preunivalence l → (X Y : UU l) → (X = Y) ↪ (X ≃ Y) + {l : Level} → axiom-preunivalence-Level l → (X Y : UU l) → (X = Y) ↪ (X ≃ Y) pr1 (emb-preunivalence L X Y) = equiv-eq pr2 (emb-preunivalence L X Y) = L X Y emb-map-preunivalence : - {l : Level} → axiom-preunivalence l → (X Y : UU l) → (X = Y) ↪ (X → Y) + {l : Level} → axiom-preunivalence-Level l → (X Y : UU l) → (X = Y) ↪ (X → Y) emb-map-preunivalence L X Y = - comp-emb (emb-subtype is-equiv-Prop) (emb-preunivalence preuniv X Y) + comp-emb (emb-subtype is-equiv-Prop) (emb-preunivalence L X Y) ``` ## Properties @@ -55,7 +61,7 @@ emb-map-preunivalence L X Y = ```agda preunivalence-univalence : - {l : Level} → axiom-univalence l → axiom-preunivalence l + {l : Level} → axiom-univalence-Level l → axiom-preunivalence-Level l preunivalence-univalence ua A B = is-emb-is-equiv (ua A B) ``` @@ -66,7 +72,8 @@ types, and for the universe itself. ```agda preunivalence-axiom-K : - {l : Level} → axiom-K l → statement-axiom-K (UU l) → axiom-preunivalence l + {l : Level} → + axiom-K-Level l → instance-axiom-K (UU l) → axiom-preunivalence-Level l preunivalence-axiom-K K K-Type A B = is-emb-is-prop-is-set ( is-set-axiom-K K-Type A B) diff --git a/src/foundation/univalence.lagda.md b/src/foundation/univalence.lagda.md index 15f2058a79..e0804edd00 100644 --- a/src/foundation/univalence.lagda.md +++ b/src/foundation/univalence.lagda.md @@ -39,7 +39,7 @@ In this file we postulate the univalence axiom. Its statement is defined in ## Postulate ```agda -postulate univalence : {l : Level} → axiom-univalence l +postulate univalence : {l : Level} → axiom-univalence-Level l ``` ## Properties diff --git a/src/foundation/universal-property-identity-types.lagda.md b/src/foundation/universal-property-identity-types.lagda.md index 5b1be62ef1..1a4d46a125 100644 --- a/src/foundation/universal-property-identity-types.lagda.md +++ b/src/foundation/universal-property-identity-types.lagda.md @@ -113,11 +113,11 @@ In this composite, we used preunivalence at the second step. ```agda module _ - {l : Level} (L : axiom-preunivalence l) (A : UU l) + {l : Level} (L : axiom-preunivalence-Level l) (A : UU l) where - is-emb-Id-axiom-preunivalence : is-emb (Id {A = A}) - is-emb-Id-axiom-preunivalence a = + is-emb-Id-axiom-preunivalence-Level : is-emb (Id {A = A}) + is-emb-Id-axiom-preunivalence-Level a = fundamental-theorem-id ( ( a , refl) , ( λ _ → @@ -157,7 +157,7 @@ module _ is-emb-Id : is-emb (Id {A = A}) is-emb-Id = - is-emb-Id-axiom-preunivalence (preunivalence-univalence univalence) A + is-emb-Id-axiom-preunivalence-Level (preunivalence-univalence univalence) A ``` #### For any type family `B` over `A`, the type of pairs `(a , e)` consisting of `a : A` and a family of equivalences `e : (x : A) → (a = x) ≃ B x` is a proposition