diff --git a/src/foundation-core/commuting-prisms-of-maps.lagda.md b/src/foundation-core/commuting-prisms-of-maps.lagda.md index a71ff6b45e..86888cf6a8 100644 --- a/src/foundation-core/commuting-prisms-of-maps.lagda.md +++ b/src/foundation-core/commuting-prisms-of-maps.lagda.md @@ -189,7 +189,11 @@ module _ ( (hC ·l inv-top) ∙h inv-front) ``` -## Translations +## Translations between coherences of prisms of maps + +Our different formulations of commuting prisms of maps are of course all +equivalent, although this remains to be formalized. Below, we record various +translations between them. ```agda module _ diff --git a/src/foundation/commuting-prisms-of-maps.lagda.md b/src/foundation/commuting-prisms-of-maps.lagda.md index 95bc495af4..5401d5e158 100644 --- a/src/foundation/commuting-prisms-of-maps.lagda.md +++ b/src/foundation/commuting-prisms-of-maps.lagda.md @@ -183,6 +183,8 @@ module _ ### Commuting prisms of maps induces commuting prisms on function types via precomposition +We prove this for a few different formulations of commuting prisms of maps. + ```agda module _ { l1 l2 l3 l1' l2' l3' l : Level} diff --git a/src/foundation/retracts-of-maps.lagda.md b/src/foundation/retracts-of-maps.lagda.md index 1fcdd1b73a..1939ca1ad0 100644 --- a/src/foundation/retracts-of-maps.lagda.md +++ b/src/foundation/retracts-of-maps.lagda.md @@ -77,6 +77,20 @@ witnessing that the where `H₀` and `H₁` are the retracting homotopies of `r₀ ∘ i₀` and `r₁ ∘ i₁` respectively. +This coherence arises from the implicit requirement that the total pasting of +the retraction square should restrict the the reflixivity homotopy on the square + +```text + A ========= A + | | + f | refl-htpy | f + v v + B ========= B, +``` + +as we are asking for the morphisms to compose to the identity morphism of +arrows. + ## Definition ### The predicate of being a retraction of a morphism of arrows @@ -144,28 +158,6 @@ module _ coherence-retract-map : UU (l1 ⊔ l2) coherence-retract-map = coherence-htpy-hom-arrow f f (comp-hom-arrow f g f r i) id-hom-arrow H H' - - coherence-prism-retract-map : UU (l1 ⊔ l2) - coherence-prism-retract-map = - vertical-coherence-prism-inv-triangles-maps - ( id) - ( map-domain-hom-arrow g f r) - ( map-domain-hom-arrow f g i) - ( id) - ( map-codomain-hom-arrow g f r) - ( map-codomain-hom-arrow f g i) - ( f) - ( g) - ( f) - ( H) - ( refl-htpy) - ( coh-hom-arrow g f r) - ( coh-hom-arrow f g i) - ( H') - - eq-coherence-retract-map-coherence-prism-retract-map : - coherence-prism-retract-map = coherence-retract-map - eq-coherence-retract-map-coherence-prism-retract-map = refl ``` ### The binary relation `f g ↦ f retract-of-map g` asserting that `f` is a retract of the map `g` @@ -410,7 +402,7 @@ module _ ### Equivalences are closed under retracts of maps -Note that the higher coherence of a retract of maps is not needed. +We may observe that the higher coherence of a retract of maps is not needed. ```agda module _ diff --git a/src/orthogonal-factorization-systems/local-types.lagda.md b/src/orthogonal-factorization-systems/local-types.lagda.md index 7b38fbe7ad..7cf28a31d3 100644 --- a/src/orthogonal-factorization-systems/local-types.lagda.md +++ b/src/orthogonal-factorization-systems/local-types.lagda.md @@ -241,7 +241,7 @@ is-contr-is-local A is-local-A = ( universal-property-empty' A) ``` -### If `S` is `g`-local, and `f` is a retract of `g`, then `S` is also `f`-local +### If `S` is `g`-local, and `f` is a retract of `g` then `S` is `f`-local ```agda module _