diff --git a/CONTRIBUTORS.toml b/CONTRIBUTORS.toml index e5af9fade2..871d116067 100644 --- a/CONTRIBUTORS.toml +++ b/CONTRIBUTORS.toml @@ -12,10 +12,10 @@ displayName = "Egbert Rijke" maintainer = true extra = " (Lead developer)" usernames = [ "Egbert Rijke" ] -homepage = "https://users.fmf.uni-lj.si/rijke/" +homepage = "https://egbertrijke.github.io" github = "EgbertRijke" bio = ''' -Egbert Rijke is a postdoctoral researcher at the University of Ljubljana. His +Egbert Rijke is a postdoctoral researcher at Johns Hopkins University. His research is on homotopy type theory and general mathematics from a univalent point of view. ''' @@ -75,16 +75,19 @@ github = "EleonoreMangel" displayName = "Bryan Lu" usernames = [ "Bryan Lu" ] github = "blu-bird" +homepage = "https://blu-bird.github.io" [[contributors]] displayName = "Raymond Baker" usernames = [ "Raymond Baker" ] github = "morphismz" +homepage = "https://morphismz.github.io" [[contributors]] displayName = "Elif Uskuplu" usernames = [ "ElifUskuplu" ] github = "ElifUskuplu" +homepage = "https://elifuskuplu.github.io" [[contributors]] displayName = "Victor Blanchi" @@ -149,6 +152,7 @@ usernames = [ "Julian KG" ] displayName = "favonia" usernames = [ "favonia" ] github = "favonia" +homepage = "https://favonia.org" [[contributors]] displayName = "fernabnor" @@ -217,6 +221,7 @@ github = "louismntnu" displayName = "Andrej Bauer" usernames = [ "Andrej Bauer" ] github = "andrejbauer" +homepage = "https://www.andrej.com" [[contributors]] displayName = "Matej Petković" diff --git a/HOME.md b/HOME.md index 3c319b3bbe..b412444cf4 100644 --- a/HOME.md +++ b/HOME.md @@ -8,14 +8,18 @@ typed programming language [Agda](https://github.com/agda/agda). agda-unimath -The library project was created by Elisabeth Stenholm, Jonathan Prieto-Cubides, -and Egbert Rijke, and is currently being maintained by Egbert Rijke, Fredrik -Bakke, and Vojtěch Štěpančík. Our goal is to create an online encyclopedia of -formalized mathematics containing an extensive curriculum of topics from a -univalent point of view. We think libraries of formalized mathematics have the -potential to be useful, and informative resources for both working and learning -mathematicians. Our library is designed to work towards this goal, and we -welcome contributions to the library within any topic in mathematics. +The library project was created by +[Elisabeth Stenholm](https://elisabeth.bonnevier.one), +[Jonathan Prieto-Cubides](https://jonaprieto.github.io), and +[Egbert Rijke](https://egbertrijke.github.io), and is currently being maintained +by Egbert Rijke, [Fredrik Bakke](https://www.ntnu.edu/employees/fredrik.bakke), +and [Vojtěch Štěpančík](https://vojtechstep.eu/). Our goal is to create an +online encyclopedia of formalized mathematics containing an extensive curriculum +of topics from a univalent point of view. We think libraries of formalized +mathematics have the potential to be useful, and informative resources for both +working and learning mathematicians. Our library is designed to work towards +this goal, and we welcome contributions to the library within any topic in +mathematics. The agda-unimath library is compatible with Agda 2.6.4 and can be compiled by running `make check` from the root directory of the repository. Learn more about diff --git a/README.md b/README.md index 3da239be43..0c283df306 100644 --- a/README.md +++ b/README.md @@ -2,13 +2,16 @@ The agda-unimath library is a community formalization project for univalent mathematics in [Agda](https://github.com/agda/agda). The library project was -created by Elisabeth Stenholm, Jonathan Prieto-Cubides, and Egbert Rijke, and is -currently being maintained by Egbert Rijke, Fredrik Bakke, and Vojtěch -Štěpančík. Our goal is to formalize an extensive curriculum of mathematics from -the univalent point of view. Furthermore, we think libraries of formalized -mathematics have the potential to be useful, and informative resources for -mathematicians. Our library is designed to work towards this goal, and we -welcome contributions to the library about any topic in mathematics. +created by [Elisabeth Stenholm](https://elisabeth.bonnevier.one), Jonathan +Prieto-Cubides, and [Egbert Rijke](https://egbertrijke.github.io), and is +currently being maintained by Egbert Rijke, +[Fredrik Bakke](https://www.ntnu.edu/employees/fredrik.bakke), and +[Vojtěch Štěpančík](https://vojtechstep.eu/). Our goal is to formalize an +extensive curriculum of mathematics from the univalent point of view. +Furthermore, we think libraries of formalized mathematics have the potential to +be useful, and informative resources for mathematicians. Our library is designed +to work towards this goal, and we welcome contributions to the library about any +topic in mathematics. ## Links diff --git a/VISUALIZATION.md b/VISUALIZATION.md index b3f32fd7c6..f3ab8abd7e 100644 --- a/VISUALIZATION.md +++ b/VISUALIZATION.md @@ -28,9 +28,11 @@ allows you to determine dependencies between individual definitions. Hover over -The interactive explorer was developed by Job Petrovčič. In addition, Vojtěch -Štěpančík, Matej Petković, and Andrej Bauer contributed invaluable suggestions -and offered helpful support. +The interactive explorer was developed by +[Job Petrovčič](https://github.com/JobPetrovcic). In addition, +[Vojtěch Štěpančík](https://vojtechstep.eu/), Matej Petković, and +[Andrej Bauer](https://www.andrej.com) contributed invaluable suggestions and +offered helpful support. ### Notes diff --git a/src/commutative-algebra/binomial-theorem-commutative-rings.lagda.md b/src/commutative-algebra/binomial-theorem-commutative-rings.lagda.md index 7707811f7e..d9293dc4b1 100644 --- a/src/commutative-algebra/binomial-theorem-commutative-rings.lagda.md +++ b/src/commutative-algebra/binomial-theorem-commutative-rings.lagda.md @@ -39,7 +39,8 @@ The **binomial theorem** in commutative rings asserts that for any two elements (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ. ``` -The binomial theorem is the 44th theorem on Freek Wiedijk's list of +The binomial theorem is the 44th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/commutative-algebra/binomial-theorem-commutative-semirings.lagda.md b/src/commutative-algebra/binomial-theorem-commutative-semirings.lagda.md index 5f8820ce77..0f3d5efa67 100644 --- a/src/commutative-algebra/binomial-theorem-commutative-semirings.lagda.md +++ b/src/commutative-algebra/binomial-theorem-commutative-semirings.lagda.md @@ -39,7 +39,8 @@ we have (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ. ``` -The binomial theorem is the 44th theorem on Freek Wiedijk's list of +The binomial theorem is the 44th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/elementary-number-theory/bezouts-lemma-integers.lagda.md b/src/elementary-number-theory/bezouts-lemma-integers.lagda.md index ac8aad0cd2..a8e2f01be2 100644 --- a/src/elementary-number-theory/bezouts-lemma-integers.lagda.md +++ b/src/elementary-number-theory/bezouts-lemma-integers.lagda.md @@ -38,9 +38,10 @@ open import foundation.unit-type -Bézout's Lemma is the 60th theorem on Freek Wiedijk's list of +Bézout's Lemma is the 60th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. It was -originally added to agda-unimath by [Brian Lu](https://blu-bird.github.io). +originally added to agda-unimath by [Bryan Lu](https://blu-bird.github.io). ## Lemma diff --git a/src/elementary-number-theory/bezouts-lemma-natural-numbers.lagda.md b/src/elementary-number-theory/bezouts-lemma-natural-numbers.lagda.md index 08fa631b14..407b072465 100755 --- a/src/elementary-number-theory/bezouts-lemma-natural-numbers.lagda.md +++ b/src/elementary-number-theory/bezouts-lemma-natural-numbers.lagda.md @@ -61,9 +61,10 @@ predicate `P : ℕ → UU lzero` given by is decidable, because `P z ⇔ [y]_x | [z]_x` in `ℤ/x`. The least positive `z` such that `P z` holds is `gcd x y`. -Bézout's Lemma is the 60th theorem on Freek Wiedijk's list of +Bézout's Lemma is the 60th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. It was -originally added to agda-unimath by [Brian Lu](https://blu-bird.github.io). +originally added to agda-unimath by [Bryan Lu](https://blu-bird.github.io). ## Definitions diff --git a/src/elementary-number-theory/binomial-theorem-integers.lagda.md b/src/elementary-number-theory/binomial-theorem-integers.lagda.md index 9b3c1f98a0..2b7d8e2e62 100644 --- a/src/elementary-number-theory/binomial-theorem-integers.lagda.md +++ b/src/elementary-number-theory/binomial-theorem-integers.lagda.md @@ -36,7 +36,8 @@ The binomial theorem for the integers asserts that for any two integers `x` and (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ. ``` -The binomial theorem is the 44th theorem on Freek Wiedijk's list of +The binomial theorem is the 44th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/elementary-number-theory/binomial-theorem-natural-numbers.lagda.md b/src/elementary-number-theory/binomial-theorem-natural-numbers.lagda.md index 2ccda8f081..e38c2d003d 100644 --- a/src/elementary-number-theory/binomial-theorem-natural-numbers.lagda.md +++ b/src/elementary-number-theory/binomial-theorem-natural-numbers.lagda.md @@ -35,7 +35,8 @@ numbers `x` and `y` and any natural number `n`, we have (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ. ``` -The binomial theorem is the 44th theorem on Freek Wiedijk's list of +The binomial theorem is the 44th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/elementary-number-theory/fundamental-theorem-of-arithmetic.lagda.md b/src/elementary-number-theory/fundamental-theorem-of-arithmetic.lagda.md index ba28dcd170..33989ff00a 100644 --- a/src/elementary-number-theory/fundamental-theorem-of-arithmetic.lagda.md +++ b/src/elementary-number-theory/fundamental-theorem-of-arithmetic.lagda.md @@ -75,8 +75,9 @@ in several ways: Note that the [univalence axiom](foundation-core.univalence.md) is neccessary to prove the second uniqueness property of prime factorizations. -The fundamental theorem of arithmetic is the 80th theorem on Freek Wiedijk's -list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. +The fundamental theorem of arithmetic is the 80th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of +[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/elementary-number-theory/infinitude-of-primes.lagda.md b/src/elementary-number-theory/infinitude-of-primes.lagda.md index 0520f10129..975d16b0b2 100644 --- a/src/elementary-number-theory/infinitude-of-primes.lagda.md +++ b/src/elementary-number-theory/infinitude-of-primes.lagda.md @@ -44,7 +44,8 @@ that there are infinitely many function that returns for each `n` the `n`-th prime, and we obtain the function that counts the number of primes below a number `n`. -The infinitude of primes is the 11th theorem on Freek Wiedijk's list of +The infinitude of primes is the 11th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definition diff --git a/src/foundation/cantor-schroder-bernstein-escardo.lagda.md b/src/foundation/cantor-schroder-bernstein-escardo.lagda.md index de884056fd..7f0d889d21 100644 --- a/src/foundation/cantor-schroder-bernstein-escardo.lagda.md +++ b/src/foundation/cantor-schroder-bernstein-escardo.lagda.md @@ -38,8 +38,9 @@ Escardó proved that a Cantor–Schröder–Bernstein theorem also holds for [embed](foundation-core.embeddings.md) into each other, then the types are [equivalent](foundation-core.equivalences.md). {{#cite Esc21}} -The Cantor–Schröder–Bernstein theorem is the 25th theorem on Freek Wiedijk's -list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. +The Cantor–Schröder–Bernstein theorem is the 25th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of +[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Statement diff --git a/src/foundation/cantors-theorem.lagda.md b/src/foundation/cantors-theorem.lagda.md index fec98acdf3..a00b09caeb 100644 --- a/src/foundation/cantors-theorem.lagda.md +++ b/src/foundation/cantors-theorem.lagda.md @@ -57,7 +57,8 @@ would have to be a fixed point of the negation operation, since but negation has no fixed points. -Cantor's theorem is the 63rd theorem on Freek Wiedijk's list of +Cantor's theorem is the 63rd theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ```agda diff --git a/src/foundation/regensburg-extension-fundamental-theorem-of-identity-types.lagda.md b/src/foundation/regensburg-extension-fundamental-theorem-of-identity-types.lagda.md index 4de8f33103..e987a62d6e 100644 --- a/src/foundation/regensburg-extension-fundamental-theorem-of-identity-types.lagda.md +++ b/src/foundation/regensburg-extension-fundamental-theorem-of-identity-types.lagda.md @@ -76,8 +76,9 @@ this condition is equivalent to the condition that `Σ A B` is `P`-separated. This theorem was stated and proven for the first time during the [Interactions of Proof Assistants and Mathematics](https://itp-school-2023.github.io) -summer school in Regensburg, 2023, as part of Egbert Rijke's tutorial on -formalization in agda-unimath. +summer school in Regensburg, 2023, as part of +[Egbert Rijke](https://egbertrijke.github.io)'s tutorial on formalization in +agda-unimath. ## Theorem diff --git a/src/literature/100-theorems.lagda.md b/src/literature/100-theorems.lagda.md index 2c87092463..0e8878f144 100644 --- a/src/literature/100-theorems.lagda.md +++ b/src/literature/100-theorems.lagda.md @@ -1,6 +1,7 @@ # Formalizing 100 Theorems -This file records formalized results from Freek Wiedijk's +This file records formalized results from +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) [_Formalizing 100 Theorems_](https://www.cs.ru.nl/~freek/100/). {{#cite 100theorems}} @@ -12,7 +13,7 @@ module literature.100-theorems where ### [3. The Denumerability of the Rational Numbers](https://www.cs.ru.nl/~freek/100/#3) {#3} -Author: Fredrik Bakke +**Author:** [Fredrik Bakke](https://www.ntnu.edu/employees/fredrik.bakke) ```agda open import elementary-number-theory.rational-numbers using @@ -21,7 +22,7 @@ open import elementary-number-theory.rational-numbers using ### [11. The Infinitude of Primes](https://www.cs.ru.nl/~freek/100/#11) {#11} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import elementary-number-theory.infinitude-of-primes using @@ -34,7 +35,7 @@ open import elementary-number-theory.infinitude-of-primes using ### [25. Schröder–Bernstein Theorem](https://www.cs.ru.nl/~freek/100/#25) {#25} -Author: Elif Uskuplu +**Author:** [Elif Uskuplu](https://elifuskuplu.github.io) Note: The formalization of the Cantor-Schröder-Bernstein theorem in agda-unimath is a generalization of the statement to all types, i.e., it is not restricted to @@ -50,7 +51,7 @@ open import foundation.cantor-schroder-bernstein-escardo using ### [44. The Binomial Theorem](https://www.cs.ru.nl/~freek/100/#44) {#44} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import commutative-algebra.binomial-theorem-commutative-rings using @@ -69,7 +70,7 @@ open import elementary-number-theory.binomial-theorem-natural-numbers using ### [52. The Number of Subsets of a Set](https://www.cs.ru.nl/~freek/100/#52) {#52} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import univalent-combinatorics.decidable-subtypes using @@ -78,7 +79,7 @@ open import univalent-combinatorics.decidable-subtypes using ### [58. Formula for the number of combinations](https://www.cs.ru.nl/~freek/100/#58) {#58} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import univalent-combinatorics.binomial-types using @@ -87,7 +88,7 @@ open import univalent-combinatorics.binomial-types using ### [60. Bezout's Lemma](https://www.cs.ru.nl/~freek/100/#60) {#60} -Author: Brian Lu +**Author:** [Bryan Lu](https://blu-bird.github.io) Note that the 60th theorem in Freek's list is listed as "Bezout's Theorem", while the linked theorems are formalizations of Bezout's lemma, even though @@ -102,7 +103,7 @@ open import elementary-number-theory.bezouts-lemma-natural-numbers using ### [63. Cantor's Theorem](https://www.cs.ru.nl/~freek/100/#63) {#63} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import foundation.cantors-theorem using @@ -111,7 +112,7 @@ open import foundation.cantors-theorem using ### [69. Greatest Common Divisor Algorithm](https://www.cs.ru.nl/~freek/100/#69) {#69} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import @@ -121,7 +122,7 @@ open import ### [74. The Principle of Mathematical Induction](https://www.cs.ru.nl/~freek/100/#74) {#74} -Author: Egbert Rijke +**Author:** [Egbert Rijke](https://egbertrijke.github.io) ```agda open import elementary-number-theory.natural-numbers using @@ -130,7 +131,7 @@ open import elementary-number-theory.natural-numbers using ### [80. The Fundamental Theorem of Arithmetic](https://www.cs.ru.nl/~freek/100/#80) {#80} -Author: Victor Blanchi +**Author:** [Victor Blanchi](https://github.com/VictorBlanchi) ```agda open import elementary-number-theory.fundamental-theorem-of-arithmetic using @@ -139,7 +140,7 @@ open import elementary-number-theory.fundamental-theorem-of-arithmetic using ### [91. The Triangle Inequality](https://www.cs.ru.nl/~freek/100/#91) {#91} -Author: malarbol +**Author:** [malarbol](https://github.com/malarbol) ```agda open import real-numbers.metric-space-of-real-numbers using diff --git a/src/real-numbers/metric-space-of-real-numbers.lagda.md b/src/real-numbers/metric-space-of-real-numbers.lagda.md index 5cc9b5fb75..a2ddf962bc 100644 --- a/src/real-numbers/metric-space-of-real-numbers.lagda.md +++ b/src/real-numbers/metric-space-of-real-numbers.lagda.md @@ -98,7 +98,8 @@ premetric-leq-ℝ l d x y = ### The standard premetric on the real numbers is a metric structure -The triangle inequality is the 91st theorem on Freek Wiedijk's list of +The triangle inequality is the 91st theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ```agda diff --git a/src/ring-theory/binomial-theorem-rings.lagda.md b/src/ring-theory/binomial-theorem-rings.lagda.md index 845a30a53e..49fcb7caa4 100644 --- a/src/ring-theory/binomial-theorem-rings.lagda.md +++ b/src/ring-theory/binomial-theorem-rings.lagda.md @@ -38,7 +38,8 @@ have (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ. ``` -The binomial theorem is the 44th theorem on Freek Wiedijk's list of +The binomial theorem is the 44th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/ring-theory/binomial-theorem-semirings.lagda.md b/src/ring-theory/binomial-theorem-semirings.lagda.md index 3ae90bfb58..ad4d2f377b 100644 --- a/src/ring-theory/binomial-theorem-semirings.lagda.md +++ b/src/ring-theory/binomial-theorem-semirings.lagda.md @@ -41,7 +41,8 @@ have (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ. ``` -The binomial theorem is the 44th theorem on Freek Wiedijk's list of +The binomial theorem is the 44th theorem on +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ## Definitions diff --git a/src/synthetic-homotopy-theory/eckmann-hilton-argument.lagda.md b/src/synthetic-homotopy-theory/eckmann-hilton-argument.lagda.md index 032085a619..bef7699d56 100644 --- a/src/synthetic-homotopy-theory/eckmann-hilton-argument.lagda.md +++ b/src/synthetic-homotopy-theory/eckmann-hilton-argument.lagda.md @@ -791,4 +791,5 @@ module _ - [Eckmann-Hilton argument](https://en.wikipedia.org/wiki/Eckmann%E2%80%93Hilton_argument) at Wikipedia - [Eckmann-Hilton and the Hopf Fibration](https://www.youtube.com/watch?v=hU4_dVpmkKM) - recorded talk given by Raymond Baker at HoTT-UF 24 + recorded talk given by [Raymond Baker](https://morphismz.github.io) at HoTT-UF + 24 diff --git a/src/univalent-combinatorics/binomial-types.lagda.md b/src/univalent-combinatorics/binomial-types.lagda.md index 83ed4c48ba..a54dda1a1e 100644 --- a/src/univalent-combinatorics/binomial-types.lagda.md +++ b/src/univalent-combinatorics/binomial-types.lagda.md @@ -388,7 +388,7 @@ equiv-binomial-type e f = ### Computation of the number of elements of the binomial type `((Fin n) (Fin m))` The computation of the number of subsets of a given cardinality of a finite set -is the 58th theorem on Freek Wiedijk's list of +is the 58th theorem on [Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of [100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ```agda diff --git a/src/univalent-combinatorics/decidable-subtypes.lagda.md b/src/univalent-combinatorics/decidable-subtypes.lagda.md index d6038d4510..aba36c80ef 100644 --- a/src/univalent-combinatorics/decidable-subtypes.lagda.md +++ b/src/univalent-combinatorics/decidable-subtypes.lagda.md @@ -92,8 +92,8 @@ module _ ### The type of decidable subtypes of a finite type is finite The computation of the number of subsets of a finite sets is the 52nd theorem on -Freek Wiedijk's list of [100 theorems](literature.100-theorems.md) -{{#cite 100theorems}}. +[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of +[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. ```agda is-finite-decidable-subtype-is-finite :