diff --git a/src/elementary-number-theory/inequality-standard-finite-types.lagda.md b/src/elementary-number-theory/inequality-standard-finite-types.lagda.md index d07a8c60eb..40a15b63b5 100644 --- a/src/elementary-number-theory/inequality-standard-finite-types.lagda.md +++ b/src/elementary-number-theory/inequality-standard-finite-types.lagda.md @@ -20,6 +20,7 @@ open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import foundation.propositions +open import foundation.function-types open import foundation.unit-type open import foundation.universe-levels @@ -85,7 +86,7 @@ leq-succ-Fin (succ-ℕ k) (inl x) = leq-succ-Fin k x leq-succ-Fin (succ-ℕ k) (inr star) = star preserves-leq-nat-Fin : - (k : ℕ) {x y : Fin k} → leq-Fin k x y → nat-Fin k x ≤-ℕ nat-Fin k y + (k : ℕ) {x y : Fin k} → leq-Fin k x y → (nat-Fin k x) ≤-ℕ (nat-Fin k y) preserves-leq-nat-Fin (succ-ℕ k) {inl x} {inl y} H = preserves-leq-nat-Fin k H preserves-leq-nat-Fin (succ-ℕ k) {inl x} {inr star} H = @@ -94,7 +95,7 @@ preserves-leq-nat-Fin (succ-ℕ k) {inr star} {inr star} H = refl-leq-ℕ k reflects-leq-nat-Fin : - (k : ℕ) {x y : Fin k} → nat-Fin k x ≤-ℕ nat-Fin k y → leq-Fin k x y + (k : ℕ) {x y : Fin k} → (nat-Fin k x) ≤-ℕ (nat-Fin k y) → leq-Fin k x y reflects-leq-nat-Fin (succ-ℕ k) {inl x} {inl y} H = reflects-leq-nat-Fin k H reflects-leq-nat-Fin (succ-ℕ k) {inr star} {inl y} H = @@ -126,7 +127,7 @@ pr2 (Fin-Poset k) = antisymmetric-leq-Fin k is-decidable-leq-Fin : (k : ℕ) (x y : Fin k) → is-decidable (leq-Fin k x y) is-decidable-leq-Fin (succ-ℕ k) (inl x) (inl y) = is-decidable-leq-Fin k x y is-decidable-leq-Fin (succ-ℕ k) (inl x) (inr y) = inl star -is-decidable-leq-Fin (succ-ℕ k) (inr x) (inl y) = inr (λ x → x) +is-decidable-leq-Fin (succ-ℕ k) (inr x) (inl y) = inr id is-decidable-leq-Fin (succ-ℕ k) (inr x) (inr y) = inl star leq-Fin-Decidable-Prop : (k : ℕ) → Fin k → Fin k → Decidable-Prop lzero