diff --git a/src/foundation-core/equivalences.lagda.md b/src/foundation-core/equivalences.lagda.md index 1f9549ab3a..44b0ec2c05 100644 --- a/src/foundation-core/equivalences.lagda.md +++ b/src/foundation-core/equivalences.lagda.md @@ -426,13 +426,13 @@ module _ pr1 (is-equiv-comp g h (sh , rh) (sg , rg)) = section-comp g h sh sg pr2 (is-equiv-comp g h (sh , rh) (sg , rg)) = retraction-comp g h rg rh - equiv-comp : B ≃ X → A ≃ B → A ≃ X - pr1 (equiv-comp g h) = map-equiv g ∘ map-equiv h - pr2 (equiv-comp g h) = is-equiv-comp (pr1 g) (pr1 h) (pr2 h) (pr2 g) + comp-equiv : B ≃ X → A ≃ B → A ≃ X + pr1 (comp-equiv g h) = map-equiv g ∘ map-equiv h + pr2 (comp-equiv g h) = is-equiv-comp (pr1 g) (pr1 h) (pr2 h) (pr2 g) infixr 15 _∘e_ _∘e_ : B ≃ X → A ≃ B → A ≃ X - _∘e_ = equiv-comp + _∘e_ = comp-equiv ``` #### If a composite and its right factor are equivalences, then so is its left factor diff --git a/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md b/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md index b6009c687f..10609483e0 100644 --- a/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md +++ b/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md @@ -494,8 +494,7 @@ module _ ( λ X → is-contr-equiv ( structure-Hatcher-Acyclic-Type (Ω X)) - ( equiv-comp - ( equiv-pointed-map-Hatcher-Acyclic-Type A (Ω X) σ i) + ( ( equiv-pointed-map-Hatcher-Acyclic-Type A (Ω X) σ i) ∘e ( equiv-transpose-suspension-loop-adjunction A X)) ( is-contr-structure-Hatcher-Acyclic-Type-Ω X)) ```