diff --git a/MIXFIX-OPERATORS.md b/MIXFIX-OPERATORS.md
index 9f226fa7cc..e2bc34c8a3 100644
--- a/MIXFIX-OPERATORS.md
+++ b/MIXFIX-OPERATORS.md
@@ -170,7 +170,7 @@ Below, we outline a list of general rules when assigning associativities.
| 40 | Multiplicative arithmetic operators |
| 36 | Subtractive arithmetic operators |
| 35 | Additive arithmetic operators |
-| 30 | Relational arithmetic operators, `_≤-ℕ_` and `_<-ℕ_` |
+| 30 | Relational arithmetic operators like`_≤-ℕ_` and `_<-ℕ_` |
| 25 | Parametric unary operators. This class is currently empty |
| 20 | Parametric exponentiative operators. This class is currently empty |
| 15 | Parametric multiplicative operators like `_×_`,`_×∗_`, `_∧_`, `_∧∗_`, function composition operators like `_∘_`,`_∘∗_`, `_∘e_`, and `_∘iff_`, identification concatenation and whiskering operators like `_∙_`, `_∙h_`, `_·l_`, and `_·r_` |
diff --git a/src/category-theory/faithful-functors-precategories.lagda.md b/src/category-theory/faithful-functors-precategories.lagda.md
index 3552650630..0816a06279 100644
--- a/src/category-theory/faithful-functors-precategories.lagda.md
+++ b/src/category-theory/faithful-functors-precategories.lagda.md
@@ -28,8 +28,8 @@ A [functor](category-theory.functors-precategories.md) between
its an [embedding](foundation-core.embeddings.md) on hom-sets.
Note that embeddings on [sets](foundation-core.sets.md) happen to coincide with
-[injections](foundation.injective-maps.md), but we define it in terms of the
-stronger notion, as this is the notion that generalizes.
+[injections](foundation.injective-maps.md). However, we define faithful functors
+in terms of embeddings because this is the notion that generalizes.
## Definition
@@ -109,7 +109,7 @@ module _
is-prop-is-injective-hom-map-Precategory
```
-### The predicate of being faithful on functors between precategories
+### The predicate of being injective on hom-sets on functors between precategories
```agda
module _
diff --git a/src/category-theory/presheaf-categories.lagda.md b/src/category-theory/presheaf-categories.lagda.md
index df9a811105..f5e7ddd193 100644
--- a/src/category-theory/presheaf-categories.lagda.md
+++ b/src/category-theory/presheaf-categories.lagda.md
@@ -40,7 +40,7 @@ functor category
C → Set.
```
-## Definition
+## Definitions
### The copresheaf category of a precategory
diff --git a/src/elementary-number-theory.lagda.md b/src/elementary-number-theory.lagda.md
index 065549cb7c..aea0990e94 100644
--- a/src/elementary-number-theory.lagda.md
+++ b/src/elementary-number-theory.lagda.md
@@ -29,6 +29,7 @@ open import elementary-number-theory.congruence-integers public
open import elementary-number-theory.congruence-natural-numbers public
open import elementary-number-theory.decidable-dependent-function-types public
open import elementary-number-theory.decidable-total-order-natural-numbers public
+open import elementary-number-theory.decidable-total-order-standard-finite-types public
open import elementary-number-theory.decidable-types public
open import elementary-number-theory.difference-integers public
open import elementary-number-theory.dirichlet-convolution public
diff --git a/src/elementary-number-theory/decidable-total-order-natural-numbers.lagda.md b/src/elementary-number-theory/decidable-total-order-natural-numbers.lagda.md
index cf78618350..218c186e1f 100644
--- a/src/elementary-number-theory/decidable-total-order-natural-numbers.lagda.md
+++ b/src/elementary-number-theory/decidable-total-order-natural-numbers.lagda.md
@@ -1,4 +1,4 @@
-# Natural numbers are a total decidable poset
+# The decidable total order of natural numbers
```agda
module elementary-number-theory.decidable-total-order-natural-numbers where
@@ -14,21 +14,30 @@ open import foundation.propositional-truncations
open import foundation.universe-levels
open import order-theory.decidable-total-orders
+open import order-theory.total-orders
```
## Idea
-The type of natural numbers equipped with its standard ordering relation forms a
-total order.
+The type of [natural numbers](elementary-number-theory.natural-numbers.md)
+[equipped](foundation.structure.md) with its
+[standard ordering relation](elementary-number-theory.inequality-natural-numbers.md)
+forms a [decidable total order](order-theory.decidable-total-orders.md).
## Definition
```agda
-ℕ-Decidable-Total-Order :
- Decidable-Total-Order lzero lzero
+is-total-leq-ℕ : is-total-Poset ℕ-Poset
+is-total-leq-ℕ n m = unit-trunc-Prop (linear-leq-ℕ n m)
+
+ℕ-Total-Order : Total-Order lzero lzero
+pr1 ℕ-Total-Order = ℕ-Poset
+pr2 ℕ-Total-Order = is-total-leq-ℕ
+
+ℕ-Decidable-Total-Order : Decidable-Total-Order lzero lzero
pr1 ℕ-Decidable-Total-Order = ℕ-Poset
-pr1 (pr2 ℕ-Decidable-Total-Order) n m = unit-trunc-Prop (linear-leq-ℕ n m)
+pr1 (pr2 ℕ-Decidable-Total-Order) = is-total-leq-ℕ
pr2 (pr2 ℕ-Decidable-Total-Order) = is-decidable-leq-ℕ
```
diff --git a/src/elementary-number-theory/decidable-total-order-standard-finite-types.lagda.md b/src/elementary-number-theory/decidable-total-order-standard-finite-types.lagda.md
new file mode 100644
index 0000000000..faaf8df86a
--- /dev/null
+++ b/src/elementary-number-theory/decidable-total-order-standard-finite-types.lagda.md
@@ -0,0 +1,47 @@
+# The decidable total order of a standard finite type
+
+```agda
+module elementary-number-theory.decidable-total-order-standard-finite-types where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.inequality-natural-numbers
+open import elementary-number-theory.inequality-standard-finite-types
+open import elementary-number-theory.natural-numbers
+
+open import foundation.dependent-pair-types
+open import foundation.propositional-truncations
+open import foundation.universe-levels
+
+open import order-theory.decidable-total-orders
+open import order-theory.total-orders
+
+open import univalent-combinatorics.standard-finite-types
+```
+
+
+
+## Idea
+
+The [standard finite type](univalent-combinatorics.standard-finite-types.md) of
+order `k` [equipped](foundation.structure.md) with its
+[standard ordering relation](elementary-number-theory.inequality-standard-finite-types.md)
+forms a [decidable total order](order-theory.decidable-total-orders.md).
+
+## Definition
+
+```agda
+is-total-leq-Fin : (k : ℕ) → is-total-Poset (Fin-Poset k)
+is-total-leq-Fin k n m = unit-trunc-Prop (linear-leq-Fin k n m)
+
+Fin-Total-Order : ℕ → Total-Order lzero lzero
+pr1 (Fin-Total-Order k) = Fin-Poset k
+pr2 (Fin-Total-Order k) = is-total-leq-Fin k
+
+Fin-Decidable-Total-Order : ℕ → Decidable-Total-Order lzero lzero
+pr1 (Fin-Decidable-Total-Order k) = Fin-Poset k
+pr1 (pr2 (Fin-Decidable-Total-Order k)) = is-total-leq-Fin k
+pr2 (pr2 (Fin-Decidable-Total-Order k)) = is-decidable-leq-Fin k
+```
diff --git a/src/elementary-number-theory/inequality-integers.lagda.md b/src/elementary-number-theory/inequality-integers.lagda.md
index aa92163af9..edf5188c06 100644
--- a/src/elementary-number-theory/inequality-integers.lagda.md
+++ b/src/elementary-number-theory/inequality-integers.lagda.md
@@ -37,6 +37,9 @@ leq-ℤ x y = type-Prop (leq-ℤ-Prop x y)
is-prop-leq-ℤ : (x y : ℤ) → is-prop (leq-ℤ x y)
is-prop-leq-ℤ x y = is-prop-type-Prop (leq-ℤ-Prop x y)
+
+infix 30 _≤-ℤ_
+_≤-ℤ_ = leq-ℤ
```
## Properties
diff --git a/src/elementary-number-theory/inequality-rational-numbers.lagda.md b/src/elementary-number-theory/inequality-rational-numbers.lagda.md
index a06ee851f8..aa52e54c68 100644
--- a/src/elementary-number-theory/inequality-rational-numbers.lagda.md
+++ b/src/elementary-number-theory/inequality-rational-numbers.lagda.md
@@ -36,6 +36,9 @@ leq-ℚ x y = type-Prop (leq-ℚ-Prop x y)
is-prop-leq-ℚ : (x y : ℚ) → is-prop (leq-ℚ x y)
is-prop-leq-ℚ x y = is-prop-type-Prop (leq-ℚ-Prop x y)
+
+infix 30 _≤-ℚ_
+_≤-ℚ_ = leq-ℚ
```
### Strict inequality on the rational numbers
diff --git a/src/elementary-number-theory/inequality-standard-finite-types.lagda.md b/src/elementary-number-theory/inequality-standard-finite-types.lagda.md
index a5dce189b2..8a095640d1 100644
--- a/src/elementary-number-theory/inequality-standard-finite-types.lagda.md
+++ b/src/elementary-number-theory/inequality-standard-finite-types.lagda.md
@@ -25,6 +25,7 @@ open import foundation.universe-levels
open import order-theory.posets
open import order-theory.preorders
+open import order-theory.total-orders
open import univalent-combinatorics.standard-finite-types
```
@@ -104,9 +105,7 @@ reflects-leq-nat-Fin (succ-ℕ k) {inl x} {inr star} H = star
reflects-leq-nat-Fin (succ-ℕ k) {inr star} {inr star} H = star
```
-## Properties
-
-### The preordering on the standard finite types
+### The partial order on the standard finite types
```agda
Fin-Preorder : ℕ → Preorder lzero lzero
@@ -120,6 +119,8 @@ pr1 (Fin-Poset k) = Fin-Preorder k
pr2 (Fin-Poset k) = antisymmetric-leq-Fin k
```
+## Properties
+
### Ordering on the standard finite types is decidable
```agda
@@ -134,3 +135,12 @@ pr1 (leq-Fin-Decidable-Prop k x y) = leq-Fin k x y
pr1 (pr2 (leq-Fin-Decidable-Prop k x y)) = is-prop-leq-Fin k x y
pr2 (pr2 (leq-Fin-Decidable-Prop k x y)) = is-decidable-leq-Fin k x y
```
+
+### Ordering on the standard finite types is linear
+
+```agda
+linear-leq-Fin : (k : ℕ) (x y : Fin k) → leq-Fin k x y + leq-Fin k y x
+linear-leq-Fin (succ-ℕ k) (inl x) (inl y) = linear-leq-Fin k x y
+linear-leq-Fin (succ-ℕ k) (inl x) (inr y) = inl star
+linear-leq-Fin (succ-ℕ k) (inr x) y = inr star
+```
diff --git a/src/elementary-number-theory/ordinal-induction-natural-numbers.lagda.md b/src/elementary-number-theory/ordinal-induction-natural-numbers.lagda.md
index 3f223b5b5c..80761f26c3 100644
--- a/src/elementary-number-theory/ordinal-induction-natural-numbers.lagda.md
+++ b/src/elementary-number-theory/ordinal-induction-natural-numbers.lagda.md
@@ -18,7 +18,7 @@ open import foundation.universe-levels
## Idea
-The ordinal induction principle of the natural numbers is the well-founded
+The **ordinal induction principle of the natural numbers** is the well-founded
induction principle of ℕ.
## To Do
diff --git a/src/order-theory/decidable-total-orders.lagda.md b/src/order-theory/decidable-total-orders.lagda.md
index a877b39fb7..b39c7659d1 100644
--- a/src/order-theory/decidable-total-orders.lagda.md
+++ b/src/order-theory/decidable-total-orders.lagda.md
@@ -28,8 +28,9 @@ open import order-theory.total-orders
## Idea
-A **decidable total order** is a total order of which the inequality relation is
-decidable.
+A **decidable total order** is a [total order](order-theory.total-orders.md) of
+which the inequality [relation](foundation.binary-relations.md) is
+[decidable](foundation.decidable-relations.md).
## Definitions
diff --git a/src/order-theory/total-orders.lagda.md b/src/order-theory/total-orders.lagda.md
index 1c8933f9c7..5c6541a1c9 100644
--- a/src/order-theory/total-orders.lagda.md
+++ b/src/order-theory/total-orders.lagda.md
@@ -23,9 +23,10 @@ open import order-theory.total-preorders
## Idea
-A **total order**, or a \*\*linear order, is a poset `P` such that for every two
-elements `x` and `y` in `P` the disjunction `(x ≤ y) ∨ (y ≤ x)` holds. In other
-words, total orders are totally ordered in the sense tat any two elements are
+A **total order**, or a **linear order**, is a [poset](order-theory.posets.md)
+`P` such that for every two elements `x` and `y` in `P` the
+[disjunction](foundation.disjunction.md) `(x ≤ y) ∨ (y ≤ x)` holds. In other
+words, total orders are totally ordered in the sense that any two elements are
comparable.
## Definitions
@@ -57,7 +58,7 @@ module _
is-prop-is-total-Poset = is-prop-is-total-Preorder (preorder-Poset X)
```
-### Type of total posets
+### The type of total orders
```agda
Total-Order : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
diff --git a/src/set-theory/cardinalities.lagda.md b/src/set-theory/cardinalities.lagda.md
index 2ffbf22310..4d34964701 100644
--- a/src/set-theory/cardinalities.lagda.md
+++ b/src/set-theory/cardinalities.lagda.md
@@ -78,19 +78,15 @@ leq-cardinality-Prop {l1} {l2} =
leq-cardinality : {l1 l2 : Level} → cardinal l1 → cardinal l2 → UU (l1 ⊔ l2)
leq-cardinality X Y = type-Prop (leq-cardinality-Prop X Y)
-infix 6 _≤-cardinality_
-_≤-cardinality_ : {l1 l2 : Level} → cardinal l1 → cardinal l2 → UU (l1 ⊔ l2)
-_≤-cardinality_ = leq-cardinality
-
is-prop-leq-cardinality :
{l1 l2 : Level} {X : cardinal l1} {Y : cardinal l2} →
- is-prop (X ≤-cardinality Y)
+ is-prop (leq-cardinality X Y)
is-prop-leq-cardinality {X = X} {Y = Y} =
is-prop-type-Prop (leq-cardinality-Prop X Y)
compute-leq-cardinality :
{l1 l2 : Level} (X : Set l1) (Y : Set l2) →
- ( cardinality X ≤-cardinality cardinality Y) ≃
+ ( leq-cardinality (cardinality X) (cardinality Y)) ≃
( mere-emb (type-Set X) (type-Set Y))
compute-leq-cardinality {l1} {l2} X Y =
equiv-eq-Prop
@@ -102,12 +98,14 @@ compute-leq-cardinality {l1} {l2} X Y =
unit-leq-cardinality :
{l1 l2 : Level} (X : Set l1) (Y : Set l2) →
- mere-emb (type-Set X) (type-Set Y) → cardinality X ≤-cardinality cardinality Y
+ mere-emb (type-Set X) (type-Set Y) →
+ leq-cardinality (cardinality X) (cardinality Y)
unit-leq-cardinality X Y = map-inv-equiv (compute-leq-cardinality X Y)
inv-unit-leq-cardinality :
{l1 l2 : Level} (X : Set l1) (Y : Set l2) →
- cardinality X ≤-cardinality cardinality Y → mere-emb (type-Set X) (type-Set Y)
+ leq-cardinality (cardinality X) (cardinality Y) →
+ mere-emb (type-Set X) (type-Set Y)
inv-unit-leq-cardinality X Y = pr1 (compute-leq-cardinality X Y)
refl-leq-cardinality : {l : Level} → is-reflexive (leq-cardinality {l})
@@ -121,32 +119,32 @@ transitive-leq-cardinality :
(X : cardinal l1)
(Y : cardinal l2)
(Z : cardinal l3) →
- X ≤-cardinality Y →
- Y ≤-cardinality Z →
- X ≤-cardinality Z
+ leq-cardinality X Y →
+ leq-cardinality Y Z →
+ leq-cardinality X Z
transitive-leq-cardinality X Y Z =
apply-dependent-universal-property-trunc-Set'
(λ u →
set-Prop
(function-Prop
- (u ≤-cardinality Y)
- (function-Prop (Y ≤-cardinality Z)
+ (leq-cardinality u Y)
+ (function-Prop (leq-cardinality Y Z)
(leq-cardinality-Prop u Z))))
(λ a →
apply-dependent-universal-property-trunc-Set'
(λ v →
set-Prop
(function-Prop
- ((cardinality a) ≤-cardinality v)
- (function-Prop (v ≤-cardinality Z)
+ (leq-cardinality (cardinality a) v)
+ (function-Prop (leq-cardinality v Z)
(leq-cardinality-Prop (cardinality a) Z))))
(λ b →
apply-dependent-universal-property-trunc-Set'
(λ w →
set-Prop
(function-Prop
- ((cardinality a) ≤-cardinality (cardinality b))
- (function-Prop ((cardinality b) ≤-cardinality w)
+ (leq-cardinality (cardinality a) (cardinality b))
+ (function-Prop (leq-cardinality (cardinality b) w)
(leq-cardinality-Prop (cardinality a) w))))
(λ c a