From 4514edbcf9a7567b6cdee6ee40498dfdc9f917be Mon Sep 17 00:00:00 2001 From: Fernando Chu <17756312+FernandoChu@users.noreply.github.com> Date: Mon, 4 Nov 2024 16:22:58 +0100 Subject: [PATCH] Strict inequality in standard finite types (#1219) Some basic definitions and lemmas. Note: the lemmas are proven in this funny way because using a `with` abstraction wasn't reducing the terms as it should in the branches. --- src/elementary-number-theory.lagda.md | 1 + ...-inequality-standard-finite-types.lagda.md | 183 ++++++++++++++++++ .../standard-finite-types.lagda.md | 74 +++---- 3 files changed, 225 insertions(+), 33 deletions(-) create mode 100644 src/elementary-number-theory/strict-inequality-standard-finite-types.lagda.md diff --git a/src/elementary-number-theory.lagda.md b/src/elementary-number-theory.lagda.md index 5e914e9155..135cca7543 100644 --- a/src/elementary-number-theory.lagda.md +++ b/src/elementary-number-theory.lagda.md @@ -146,6 +146,7 @@ open import elementary-number-theory.strict-inequality-integer-fractions public open import elementary-number-theory.strict-inequality-integers public open import elementary-number-theory.strict-inequality-natural-numbers public open import elementary-number-theory.strict-inequality-rational-numbers public +open import elementary-number-theory.strict-inequality-standard-finite-types public open import elementary-number-theory.strictly-ordered-pairs-of-natural-numbers public open import elementary-number-theory.strong-induction-natural-numbers public open import elementary-number-theory.sums-of-natural-numbers public diff --git a/src/elementary-number-theory/strict-inequality-standard-finite-types.lagda.md b/src/elementary-number-theory/strict-inequality-standard-finite-types.lagda.md new file mode 100644 index 0000000000..5083034a1f --- /dev/null +++ b/src/elementary-number-theory/strict-inequality-standard-finite-types.lagda.md @@ -0,0 +1,183 @@ +# Strict inequality on the standard finite types + +```agda +module elementary-number-theory.strict-inequality-standard-finite-types where +``` + +
Imports + +```agda +open import elementary-number-theory.inequality-natural-numbers +open import elementary-number-theory.natural-numbers + +open import foundation.action-on-identifications-functions +open import foundation.coproduct-types +open import foundation.empty-types +open import foundation.function-types +open import foundation.identity-types +open import foundation.propositions +open import foundation.transport-along-identifications +open import foundation.unit-type +open import foundation.universe-levels + +open import univalent-combinatorics.standard-finite-types +``` + +
+ +## Definitions + +### The strict inequality relation on the standard finite types + +```agda +le-Fin-Prop : (k : ℕ) → Fin k → Fin k → Prop lzero +le-Fin-Prop (succ-ℕ k) (inl x) (inl y) = le-Fin-Prop k x y +le-Fin-Prop (succ-ℕ k) (inl x) (inr star) = unit-Prop +le-Fin-Prop (succ-ℕ k) (inr star) y = empty-Prop + +le-Fin : (k : ℕ) → Fin k → Fin k → UU lzero +le-Fin k x y = type-Prop (le-Fin-Prop k x y) + +is-prop-le-Fin : + (k : ℕ) (x y : Fin k) → is-prop (le-Fin k x y) +is-prop-le-Fin k x y = is-prop-type-Prop (le-Fin-Prop k x y) +``` + +### The predicate on maps between standard finite types of preserving strict inequality + +```agda +preserves-le-Fin : (n m : ℕ) → (Fin n → Fin m) → UU lzero +preserves-le-Fin n m f = + (a b : Fin n) → + le-Fin n a b → + le-Fin m (f a) (f b) + +is-prop-preserves-le-Fin : + (n m : ℕ) (f : Fin n → Fin m) → + is-prop (preserves-le-Fin n m f) +is-prop-preserves-le-Fin n m f = + is-prop-Π λ a → + is-prop-Π λ b → + is-prop-Π λ p → + is-prop-le-Fin m (f a) (f b) +``` + +### A map `Fin (succ-ℕ m) → Fin (succ-ℕ n)` preserving strict inequality restricts to a map `Fin m → Fin n` + +#### The induced map obtained by restricting + +```agda +restriction-preserves-le-Fin' : + (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → + (preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → + (x : Fin m) → (y : Fin (succ-ℕ n)) → + (f (inl x) = y) → Fin n +restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inl y) p = y +restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inr y) p = + ex-falso + ( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) p + ( pf (inl x) (inr star) star)) + +restriction-preserves-le-Fin : + (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → + (preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → + Fin m → Fin n +restriction-preserves-le-Fin m n f pf x = + restriction-preserves-le-Fin' m n f pf x (f (inl x)) refl +``` + +#### The induced map is indeed a restriction + +```agda +inl-restriction-preserves-le-Fin' : + (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → + (pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → + (x : Fin m) → + (rx : Fin (succ-ℕ n)) → + (px : f (inl x) = rx) → + inl-Fin n (restriction-preserves-le-Fin' m n f pf x rx px) = f (inl-Fin m x) +inl-restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inl a) px = inv px +inl-restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inr a) px = + ex-falso + ( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) px + ( pf (inl x) (inr star) star)) + +inl-restriction-preserves-le-Fin : + (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → + (pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → + (x : Fin m) → + inl-Fin n (restriction-preserves-le-Fin m n f pf x) = f (inl-Fin m x) +inl-restriction-preserves-le-Fin m n f pf x = + inl-restriction-preserves-le-Fin' m n f pf x (f (inl x)) refl +``` + +#### The induced map preserves strict inequality + +```agda +preserves-le-restriction-preserves-le-Fin' : + (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → + (pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → + ( a : Fin m) + ( b : Fin m) → + ( ra : Fin (succ-ℕ n)) → + ( pa : f (inl a) = ra) → + ( rb : Fin (succ-ℕ n)) → + ( pb : f (inl b) = rb) → + le-Fin m a b → + le-Fin n + (restriction-preserves-le-Fin' m n f pf a ra pa) + (restriction-preserves-le-Fin' m n f pf b rb pb) +preserves-le-restriction-preserves-le-Fin' + (succ-ℕ m) n f pf a b (inl x) pa (inl y) pb H = + tr (le-Fin (succ-ℕ n) (inl x)) pb + ( tr (λ - → le-Fin (succ-ℕ n) - (f (inl b))) pa + ( pf (inl a) (inl b) H)) +preserves-le-restriction-preserves-le-Fin' + (succ-ℕ m) n f pf a b (inl x) pa (inr y) pb H = + ex-falso + ( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) pb + ( pf (inl b) (inr star) star)) +preserves-le-restriction-preserves-le-Fin' + (succ-ℕ m) n f pf a b (inr x) pa y pb H = + ex-falso + ( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) pa + ( pf (inl a) (inr star) star)) + +preserves-le-restriction-preserves-le-Fin : + (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → + (pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → + preserves-le-Fin m n (restriction-preserves-le-Fin m n f pf) +preserves-le-restriction-preserves-le-Fin m n f pf a b H = + preserves-le-restriction-preserves-le-Fin' m n f pf a b + ( f (inl a)) refl (f (inl b)) refl H +``` + +### A strict inequality preserving map implies an inequality of cardinalities + +```agda +leq-preserves-le-Fin : + (m n : ℕ) → (f : Fin m → Fin n) → + preserves-le-Fin m n f → leq-ℕ m n +leq-preserves-le-Fin 0 0 f pf = star +leq-preserves-le-Fin 0 (succ-ℕ n) f pf = star +leq-preserves-le-Fin (succ-ℕ m) 0 f pf = f (inr star) +leq-preserves-le-Fin (succ-ℕ 0) (succ-ℕ n) f pf = star +leq-preserves-le-Fin (succ-ℕ (succ-ℕ m)) (succ-ℕ n) f pf = + leq-preserves-le-Fin (succ-ℕ m) n + ( restriction-preserves-le-Fin (succ-ℕ m) n f pf) + ( preserves-le-restriction-preserves-le-Fin (succ-ℕ m) n f pf) +``` + +### Composition of strict inequality preserving maps + +```agda +comp-preserves-le-Fin : + (m n o : ℕ) + (g : Fin n → Fin o) + (f : Fin m → Fin n) → + preserves-le-Fin m n f → + preserves-le-Fin n o g → + preserves-le-Fin m o (g ∘ f) +comp-preserves-le-Fin m n o g f pf pg a b H = + pg (f a) (f b) (pf a b H) +``` diff --git a/src/univalent-combinatorics/standard-finite-types.lagda.md b/src/univalent-combinatorics/standard-finite-types.lagda.md index 9756d21d09..44e2d472da 100644 --- a/src/univalent-combinatorics/standard-finite-types.lagda.md +++ b/src/univalent-combinatorics/standard-finite-types.lagda.md @@ -180,6 +180,47 @@ is-not-contractible-Fin (succ-ℕ (succ-ℕ k)) f C = neq-inl-inr (eq-is-contr' C (neg-two-Fin (succ-ℕ k)) (neg-one-Fin (succ-ℕ k))) ``` +### The zero elements in the standard finite types + +```agda +zero-Fin : (k : ℕ) → Fin (succ-ℕ k) +zero-Fin zero-ℕ = inr star +zero-Fin (succ-ℕ k) = inl (zero-Fin k) + +is-zero-Fin : (k : ℕ) → Fin k → UU lzero +is-zero-Fin (succ-ℕ k) x = x = zero-Fin k + +is-zero-Fin' : (k : ℕ) → Fin k → UU lzero +is-zero-Fin' (succ-ℕ k) x = zero-Fin k = x + +is-nonzero-Fin : (k : ℕ) → Fin k → UU lzero +is-nonzero-Fin (succ-ℕ k) x = ¬ (is-zero-Fin (succ-ℕ k) x) +``` + +### The successor function on the standard finite types + +```agda +skip-zero-Fin : (k : ℕ) → Fin k → Fin (succ-ℕ k) +skip-zero-Fin (succ-ℕ k) (inl x) = inl (skip-zero-Fin k x) +skip-zero-Fin (succ-ℕ k) (inr star) = inr star + +succ-Fin : (k : ℕ) → Fin k → Fin k +succ-Fin (succ-ℕ k) (inl x) = skip-zero-Fin k x +succ-Fin (succ-ℕ k) (inr star) = (zero-Fin k) + +Fin-Type-With-Endomorphism : ℕ → Type-With-Endomorphism lzero +pr1 (Fin-Type-With-Endomorphism k) = Fin k +pr2 (Fin-Type-With-Endomorphism k) = succ-Fin k +``` + +### The bounded successor function on the standard finite types + +```agda +bounded-succ-Fin : (k : ℕ) → Fin k → Fin k +bounded-succ-Fin (succ-ℕ k) (inl x) = skip-zero-Fin k x +bounded-succ-Fin (succ-ℕ k) (inr star) = inr star +``` + ### The inclusion of `Fin k` into `ℕ` ```agda @@ -232,39 +273,6 @@ pr1 (emb-nat-Fin k) = nat-Fin k pr2 (emb-nat-Fin k) = is-emb-nat-Fin k ``` -### The zero elements in the standard finite types - -```agda -zero-Fin : (k : ℕ) → Fin (succ-ℕ k) -zero-Fin zero-ℕ = inr star -zero-Fin (succ-ℕ k) = inl (zero-Fin k) - -is-zero-Fin : (k : ℕ) → Fin k → UU lzero -is-zero-Fin (succ-ℕ k) x = x = zero-Fin k - -is-zero-Fin' : (k : ℕ) → Fin k → UU lzero -is-zero-Fin' (succ-ℕ k) x = zero-Fin k = x - -is-nonzero-Fin : (k : ℕ) → Fin k → UU lzero -is-nonzero-Fin (succ-ℕ k) x = ¬ (is-zero-Fin (succ-ℕ k) x) -``` - -### The successor function on the standard finite types - -```agda -skip-zero-Fin : (k : ℕ) → Fin k → Fin (succ-ℕ k) -skip-zero-Fin (succ-ℕ k) (inl x) = inl (skip-zero-Fin k x) -skip-zero-Fin (succ-ℕ k) (inr star) = inr star - -succ-Fin : (k : ℕ) → Fin k → Fin k -succ-Fin (succ-ℕ k) (inl x) = skip-zero-Fin k x -succ-Fin (succ-ℕ k) (inr star) = (zero-Fin k) - -Fin-Type-With-Endomorphism : ℕ → Type-With-Endomorphism lzero -pr1 (Fin-Type-With-Endomorphism k) = Fin k -pr2 (Fin-Type-With-Endomorphism k) = succ-Fin k -``` - ```agda is-zero-nat-zero-Fin : {k : ℕ} → is-zero-ℕ (nat-Fin (succ-ℕ k) (zero-Fin k)) is-zero-nat-zero-Fin {zero-ℕ} = refl