diff --git a/src/finite-group-theory/concrete-quaternion-group.lagda.md b/src/finite-group-theory/concrete-quaternion-group.lagda.md index 9087543aad..c7c9128a36 100644 --- a/src/finite-group-theory/concrete-quaternion-group.lagda.md +++ b/src/finite-group-theory/concrete-quaternion-group.lagda.md @@ -37,7 +37,7 @@ equiv-face-cube : ( map-axis-equiv-cube (succ-ℕ k) X Y e d a)) equiv-face-cube k X Y e d a = pair - ( equiv-complement-point-UU-Fin k + ( equiv-complement-element-UU-Fin k ( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) ( pair ( dim-cube-UU-Fin (succ-ℕ k) Y) @@ -48,7 +48,7 @@ equiv-face-cube k X Y e d a = ( equiv-tr ( axis-cube (succ-ℕ k) Y) ( inv - ( natural-inclusion-equiv-complement-isolated-point + ( natural-inclusion-equiv-complement-isolated-element ( dim-equiv-cube (succ-ℕ k) X Y e) ( pair d ( λ z → @@ -68,7 +68,7 @@ equiv-face-cube k X Y e d a = ( refl) ( d')))) ∘e ( axis-equiv-cube (succ-ℕ k) X Y e - ( inclusion-complement-point-UU-Fin k + ( inclusion-complement-element-UU-Fin k ( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) d'))) cube-with-labeled-faces : diff --git a/src/foundation/isolated-elements.lagda.md b/src/foundation/isolated-elements.lagda.md index 31fe2e98df..56439d9694 100644 --- a/src/foundation/isolated-elements.lagda.md +++ b/src/foundation/isolated-elements.lagda.md @@ -69,7 +69,7 @@ module _ is-isolated-isolated-element = pr2 x ``` -### Complements of isolated points +### Complements of isolated elements ```agda complement-isolated-element : @@ -162,7 +162,8 @@ module _ is-contr-total-Eq-isolated-element : (d : is-isolated a) → is-contr (Σ A (Eq-isolated-element d)) - pr1 (is-contr-total-Eq-isolated-element d) = center-total-Eq-isolated-element d + pr1 (is-contr-total-Eq-isolated-element d) = + center-total-Eq-isolated-element d pr2 (is-contr-total-Eq-isolated-element d) = contraction-total-Eq-isolated-element d @@ -280,7 +281,7 @@ module _ is-decidable-emb-point-isolated-element ``` -### Types with isolated points can be equipped with a Maybe-structure +### Types with isolated elements can be equipped with a Maybe-structure ```agda map-maybe-structure-isolated-element : diff --git a/src/foundation/products-unordered-tuples-of-types.lagda.md b/src/foundation/products-unordered-tuples-of-types.lagda.md index 0d38144963..b0be1de823 100644 --- a/src/foundation/products-unordered-tuples-of-types.lagda.md +++ b/src/foundation/products-unordered-tuples-of-types.lagda.md @@ -53,14 +53,14 @@ equiv-pr-product-unordered-tuple-types : equiv-pr-product-unordered-tuple-types n A i = ( equiv-Π ( element-unordered-tuple (succ-ℕ n) A) - ( equiv-maybe-structure-point-UU-Fin n + ( equiv-maybe-structure-element-UU-Fin n ( type-unordered-tuple-UU-Fin (succ-ℕ n) A) i) ( λ x → id-equiv)) ∘e ( inv-equiv ( equiv-dependent-universal-property-Maybe ( λ j → element-unordered-tuple (succ-ℕ n) A - ( map-equiv (equiv-maybe-structure-point-UU-Fin n + ( map-equiv (equiv-maybe-structure-element-UU-Fin n ( type-unordered-tuple-UU-Fin (succ-ℕ n) A) i) ( j))))) diff --git a/src/foundation/unordered-tuples.lagda.md b/src/foundation/unordered-tuples.lagda.md index 4693c07116..ac5fa9d23b 100644 --- a/src/foundation/unordered-tuples.lagda.md +++ b/src/foundation/unordered-tuples.lagda.md @@ -84,7 +84,7 @@ module _ type-complement-point-unordered-tuple-UU-Fin : UU-Fin lzero n type-complement-point-unordered-tuple-UU-Fin = - complement-point-UU-Fin n + complement-element-UU-Fin n ( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) t) i) type-complement-point-unordered-tuple : UU lzero @@ -94,13 +94,13 @@ module _ inclusion-complement-point-unordered-tuple : type-complement-point-unordered-tuple → type-unordered-tuple (succ-ℕ n) t inclusion-complement-point-unordered-tuple = - inclusion-complement-point-UU-Fin n + inclusion-complement-element-UU-Fin n ( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) t) i) unordered-tuple-complement-point-type-unordered-tuple : unordered-tuple n A pr1 unordered-tuple-complement-point-type-unordered-tuple = - complement-point-UU-Fin n + complement-element-UU-Fin n ( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) t) i) pr2 unordered-tuple-complement-point-type-unordered-tuple = ( element-unordered-tuple (succ-ℕ n) t) ∘ diff --git a/src/univalent-combinatorics.lagda.md b/src/univalent-combinatorics.lagda.md index 9764775769..008ad5b3b2 100644 --- a/src/univalent-combinatorics.lagda.md +++ b/src/univalent-combinatorics.lagda.md @@ -27,7 +27,7 @@ open import univalent-combinatorics.binomial-types public open import univalent-combinatorics.bracelets public open import univalent-combinatorics.cartesian-product-types public open import univalent-combinatorics.classical-finite-types public -open import univalent-combinatorics.complements-isolated-points public +open import univalent-combinatorics.complements-isolated-elements public open import univalent-combinatorics.coproduct-types public open import univalent-combinatorics.counting public open import univalent-combinatorics.counting-decidable-subtypes public diff --git a/src/univalent-combinatorics/complements-isolated-points.lagda.md b/src/univalent-combinatorics/complements-isolated-elements.lagda.md similarity index 60% rename from src/univalent-combinatorics/complements-isolated-points.lagda.md rename to src/univalent-combinatorics/complements-isolated-elements.lagda.md index c7e95b4b85..d0893d63cb 100644 --- a/src/univalent-combinatorics/complements-isolated-points.lagda.md +++ b/src/univalent-combinatorics/complements-isolated-elements.lagda.md @@ -1,4 +1,4 @@ -# Complements of isolated points of finite types +# Complements of isolated elements of finite types ```agda module univalent-combinatorics.complements-isolated-elements where @@ -26,89 +26,89 @@ open import univalent-combinatorics.finite-types ## Idea -For any point `x` in a [finite type](univalent-combinatorics.finite-types.md) +For any element `x` in a [finite type](univalent-combinatorics.finite-types.md) `X` of [cardinality](set-theory.cardinalities.md) `n+1`, we can construct its **complement**, which is a type of cardinality `n`. ## Definition -### The complement of a point in a k-element type of arbitrary universe level +### The complement of a element in a `k`-element type of arbitrary universe level ```agda -isolated-point-UU-Fin : +isolated-element-UU-Fin : {l : Level} (k : ℕ) (X : UU-Fin l (succ-ℕ k)) → type-UU-Fin (succ-ℕ k) X → - isolated-point (type-UU-Fin (succ-ℕ k) X) -pr1 (isolated-point-UU-Fin k X x) = x -pr2 (isolated-point-UU-Fin k X x) = + isolated-element (type-UU-Fin (succ-ℕ k) X) +pr1 (isolated-element-UU-Fin k X x) = x +pr2 (isolated-element-UU-Fin k X x) = has-decidable-equality-has-cardinality ( succ-ℕ k) ( has-cardinality-type-UU-Fin (succ-ℕ k) X) ( x) -type-complement-point-UU-Fin : +type-complement-element-UU-Fin : {l1 : Level} (k : ℕ) → Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k)) → UU l1 -type-complement-point-UU-Fin k (X , x) = - complement-isolated-point +type-complement-element-UU-Fin k (X , x) = + complement-isolated-element ( type-UU-Fin (succ-ℕ k) X) - ( isolated-point-UU-Fin k X x) + ( isolated-element-UU-Fin k X x) -equiv-maybe-structure-point-UU-Fin : +equiv-maybe-structure-element-UU-Fin : {l : Level} (k : ℕ) (X : UU-Fin l (succ-ℕ k)) → (x : type-UU-Fin (succ-ℕ k) X) → - Maybe (type-complement-point-UU-Fin k (pair X x)) ≃ + Maybe (type-complement-element-UU-Fin k (pair X x)) ≃ type-UU-Fin (succ-ℕ k) X -equiv-maybe-structure-point-UU-Fin k X x = - equiv-maybe-structure-isolated-point +equiv-maybe-structure-element-UU-Fin k X x = + equiv-maybe-structure-isolated-element ( type-UU-Fin (succ-ℕ k) X) - ( isolated-point-UU-Fin k X x) + ( isolated-element-UU-Fin k X x) -has-cardinality-type-complement-point-UU-Fin : +has-cardinality-type-complement-element-UU-Fin : {l1 : Level} (k : ℕ) (X : Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k))) → - has-cardinality k (type-complement-point-UU-Fin k X) -has-cardinality-type-complement-point-UU-Fin k (pair (pair X H) x) = + has-cardinality k (type-complement-element-UU-Fin k X) +has-cardinality-type-complement-element-UU-Fin k (pair (pair X H) x) = apply-universal-property-trunc-Prop H ( has-cardinality-Prop k - ( type-complement-point-UU-Fin k (pair (pair X H) x))) + ( type-complement-element-UU-Fin k (pair (pair X H) x))) ( λ e → unit-trunc-Prop ( equiv-equiv-Maybe ( ( inv-equiv - ( equiv-maybe-structure-point-UU-Fin k (pair X H) x)) ∘e + ( equiv-maybe-structure-element-UU-Fin k (pair X H) x)) ∘e ( e)))) -complement-point-UU-Fin : +complement-element-UU-Fin : {l1 : Level} (k : ℕ) → Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k)) → UU-Fin l1 k -pr1 (complement-point-UU-Fin k T) = - type-complement-point-UU-Fin k T -pr2 (complement-point-UU-Fin k T) = - has-cardinality-type-complement-point-UU-Fin k T +pr1 (complement-element-UU-Fin k T) = + type-complement-element-UU-Fin k T +pr2 (complement-element-UU-Fin k T) = + has-cardinality-type-complement-element-UU-Fin k T -inclusion-complement-point-UU-Fin : +inclusion-complement-element-UU-Fin : {l1 : Level} (k : ℕ) (X : Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k))) → - type-complement-point-UU-Fin k X → type-UU-Fin (succ-ℕ k) (pr1 X) -inclusion-complement-point-UU-Fin k X x = pr1 x + type-complement-element-UU-Fin k X → type-UU-Fin (succ-ℕ k) (pr1 X) +inclusion-complement-element-UU-Fin k X x = pr1 x ``` ### The action of equivalences on complements of isolated points ```agda -equiv-complement-point-UU-Fin : +equiv-complement-element-UU-Fin : {l1 : Level} (k : ℕ) (X Y : Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k))) → (e : equiv-UU-Fin (succ-ℕ k) (pr1 X) (pr1 Y)) (p : Id (map-equiv e (pr2 X)) (pr2 Y)) → equiv-UU-Fin k - ( complement-point-UU-Fin k X) - ( complement-point-UU-Fin k Y) -equiv-complement-point-UU-Fin + ( complement-element-UU-Fin k X) + ( complement-element-UU-Fin k Y) +equiv-complement-element-UU-Fin k S T e p = - equiv-complement-isolated-point e + equiv-complement-isolated-element e ( pair x (λ x' → has-decidable-equality-has-cardinality (succ-ℕ k) H x x')) ( pair y (λ y' → has-decidable-equality-has-cardinality (succ-ℕ k) K y y')) ( p) @@ -121,7 +121,7 @@ equiv-complement-point-UU-Fin ## Properties -### The map from a pointed `k+1`-element type to the complement of the point is an equivalence +### The map from a pointed `k+1`-element type to the complement of the element is an equivalence This remains to be shown. [#744](https://github.com/UniMath/agda-unimath/issues/744) diff --git a/src/univalent-combinatorics/cubes.lagda.md b/src/univalent-combinatorics/cubes.lagda.md index 3481ec791c..0c9ea342e7 100644 --- a/src/univalent-combinatorics/cubes.lagda.md +++ b/src/univalent-combinatorics/cubes.lagda.md @@ -106,9 +106,9 @@ face-cube : (k : ℕ) (X : cube (succ-ℕ k)) (d : dim-cube (succ-ℕ k) X) (a : axis-cube (succ-ℕ k) X d) → cube k pr1 (face-cube k X d a) = - complement-point-UU-Fin k (pair (dim-cube-UU-Fin (succ-ℕ k) X) d) + complement-element-UU-Fin k (pair (dim-cube-UU-Fin (succ-ℕ k) X) d) pr2 (face-cube k X d a) d' = axis-cube-UU-2 (succ-ℕ k) X - ( inclusion-complement-point-UU-Fin k + ( inclusion-complement-element-UU-Fin k ( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) d') ``` diff --git a/src/univalent-combinatorics/main-classes-of-latin-hypercubes.lagda.md b/src/univalent-combinatorics/main-classes-of-latin-hypercubes.lagda.md index c09d8837d1..dee4973e2e 100644 --- a/src/univalent-combinatorics/main-classes-of-latin-hypercubes.lagda.md +++ b/src/univalent-combinatorics/main-classes-of-latin-hypercubes.lagda.md @@ -122,7 +122,7 @@ is-π-finite-Main-Class-Latin-Hypercube-of-Order k n m = is-finite-Π ( is-finite-Π ( is-finite-has-cardinality n - ( has-cardinality-type-complement-point-UU-Fin n + ( has-cardinality-type-complement-element-UU-Fin n ( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) A) i))) ( λ j → is-finite-type-UU-Fin m