From 531a0aba8701e14898512958a66059e68cffe830 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Vojt=C4=9Bch=20=C5=A0t=C4=9Bpan=C4=8D=C3=ADk?= Date: Thu, 14 Dec 2023 17:14:50 +0100 Subject: [PATCH] Swap order of arguments for lifts of families of elements (#981) Makes the arguments to definitions about lifts of elements start with type families, and continue with the families of elements that we're lifting. This makes sense conceptually, because e.g. `lift-family-of-elements B` is now a function which takes a family of elements to its type of lifts, so we can talk about concepts such as "transport in the family of lifts" by writing `tr (lift-family-of-elements B)`. --- ...property-family-of-fibers-of-maps.lagda.md | 24 ++--- ...double-lifts-families-of-elements.lagda.md | 13 +-- ...double-lifts-families-of-elements.lagda.md | 97 ++++++++++--------- ...nsions-lifts-families-of-elements.lagda.md | 66 ++++++------- .../lifts-families-of-elements.lagda.md | 26 ++--- 5 files changed, 120 insertions(+), 106 deletions(-) diff --git a/src/foundation/universal-property-family-of-fibers-of-maps.lagda.md b/src/foundation/universal-property-family-of-fibers-of-maps.lagda.md index fa50fc60b7..c0226e3916 100644 --- a/src/foundation/universal-property-family-of-fibers-of-maps.lagda.md +++ b/src/foundation/universal-property-family-of-fibers-of-maps.lagda.md @@ -101,10 +101,10 @@ module _ where dependent-universal-property-family-of-fibers : - {f : A → B} (F : B → UU l3) (δ : lift-family-of-elements f F) → UUω + {f : A → B} (F : B → UU l3) (δ : lift-family-of-elements F f) → UUω dependent-universal-property-family-of-fibers F δ = {l : Level} (X : (b : B) → F b → UU l) → - is-equiv (ev-double-lift-family-of-elements {B = F} δ {X}) + is-equiv (ev-double-lift-family-of-elements {B = F} {X} δ) ``` ### The universal property of the family of fibers of a map @@ -127,10 +127,10 @@ module _ where universal-property-family-of-fibers : - {f : A → B} (F : B → UU l3) (δ : lift-family-of-elements f F) → UUω + {f : A → B} (F : B → UU l3) (δ : lift-family-of-elements F f) → UUω universal-property-family-of-fibers F δ = {l : Level} (X : B → UU l) → - is-equiv (ev-double-lift-family-of-elements {B = F} δ {λ b _ → X b}) + is-equiv (ev-double-lift-family-of-elements {B = F} {λ b _ → X b} δ) ``` ### The lift of any map to its family of fibers @@ -140,7 +140,7 @@ module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where - lift-family-of-elements-fiber : lift-family-of-elements f (fiber f) + lift-family-of-elements-fiber : lift-family-of-elements (fiber f) f pr1 (lift-family-of-elements-fiber a) = a pr2 (lift-family-of-elements-fiber a) = refl ``` @@ -240,7 +240,7 @@ module _ equiv-universal-property-family-of-fibers : {l3 : Level} (C : B → UU l3) → - ((y : B) → fiber f y → C y) ≃ lift-family-of-elements f C + ((y : B) → fiber f y → C y) ≃ lift-family-of-elements C f equiv-universal-property-family-of-fibers C = equiv-dependent-universal-property-family-of-fibers f (λ y _ → C y) ``` @@ -256,7 +256,7 @@ module _ where inv-equiv-universal-property-family-of-fibers : - (lift-family-of-elements f C) ≃ ((y : B) → fiber f y → C y) + (lift-family-of-elements C f) ≃ ((y : B) → fiber f y → C y) inv-equiv-universal-property-family-of-fibers = inv-equiv-dependent-universal-property-family-of-fibers f (λ y _ → C y) ``` @@ -274,7 +274,7 @@ module _ abstract uniqueness-extension-universal-property-family-of-fibers : is-contr - ( extension-double-lift-family-of-elements δ (λ y (_ : F y) → G y) γ) + ( extension-double-lift-family-of-elements (λ y (_ : F y) → G y) δ γ) uniqueness-extension-universal-property-family-of-fibers = is-contr-equiv ( fiber (ev-double-lift-family-of-elements δ) γ) @@ -283,7 +283,7 @@ module _ abstract extension-universal-property-family-of-fibers : - extension-double-lift-family-of-elements δ (λ y (_ : F y) → G y) γ + extension-double-lift-family-of-elements (λ y (_ : F y) → G y) δ γ extension-universal-property-family-of-fibers = center uniqueness-extension-universal-property-family-of-fibers @@ -294,8 +294,9 @@ module _ extension-universal-property-family-of-fibers is-extension-fiberwise-map-universal-property-family-of-fibers : - is-extension-double-lift-family-of-elements δ + is-extension-double-lift-family-of-elements ( λ y _ → G y) + ( δ) ( γ) ( fiberwise-map-universal-property-family-of-fibers) is-extension-fiberwise-map-universal-property-family-of-fibers = @@ -392,8 +393,9 @@ module _ pr1 extension-by-fiberwise-equiv-universal-property-family-of-fibers is-extension-fiberwise-equiv-universal-property-of-fibers : - is-extension-double-lift-family-of-elements δ + is-extension-double-lift-family-of-elements ( λ y _ → G y) + ( δ) ( γ) ( map-fiberwise-equiv ( fiberwise-equiv-universal-property-of-fibers)) diff --git a/src/orthogonal-factorization-systems/double-lifts-families-of-elements.lagda.md b/src/orthogonal-factorization-systems/double-lifts-families-of-elements.lagda.md index 032f76b87d..acd8dc3b2d 100644 --- a/src/orthogonal-factorization-systems/double-lifts-families-of-elements.lagda.md +++ b/src/orthogonal-factorization-systems/double-lifts-families-of-elements.lagda.md @@ -63,27 +63,28 @@ The type of double lifts plays a role in the ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} (b : dependent-lift-family-of-elements a B) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} (C : (i : I) (x : A i) → B i x → UU l4) + {a : (i : I) → A i} (b : dependent-lift-family-of-elements B a) where dependent-double-lift-family-of-elements : UU (l1 ⊔ l4) dependent-double-lift-family-of-elements = - dependent-lift-family-of-elements b (λ i → C i (a i)) + dependent-lift-family-of-elements (λ i → C i (a i)) b ``` ### Double lifts of families of elements ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} (b : lift-family-of-elements a B) (C : (x : A) → B x → UU l4) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + (C : (x : A) → B x → UU l4) + {a : I → A} (b : lift-family-of-elements B a) where double-lift-family-of-elements : UU (l1 ⊔ l4) double-lift-family-of-elements = - dependent-lift-family-of-elements b (λ i → C (a i)) + dependent-lift-family-of-elements (λ i → C (a i)) b ``` ## See also diff --git a/src/orthogonal-factorization-systems/extensions-double-lifts-families-of-elements.lagda.md b/src/orthogonal-factorization-systems/extensions-double-lifts-families-of-elements.lagda.md index 5a617ec37c..63ba294492 100644 --- a/src/orthogonal-factorization-systems/extensions-double-lifts-families-of-elements.lagda.md +++ b/src/orthogonal-factorization-systems/extensions-double-lifts-families-of-elements.lagda.md @@ -61,14 +61,14 @@ given by `c ↦ (λ i → c i (a i) (b i))`. ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} (b : dependent-lift-family-of-elements a B) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} {C : (i : I) (x : A i) → B i x → UU l4} + {a : (i : I) → A i} (b : dependent-lift-family-of-elements B a) where ev-dependent-double-lift-family-of-elements : ((i : I) (x : A i) (y : B i x) → C i x y) → - dependent-double-lift-family-of-elements b C + dependent-double-lift-family-of-elements C b ev-dependent-double-lift-family-of-elements h i = h i (a i) (b i) ``` @@ -85,13 +85,13 @@ given by `c ↦ (λ i → c (a i) (b i))`. ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} (b : lift-family-of-elements a B) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} {C : (x : A) → B x → UU l4} + {a : I → A} (b : lift-family-of-elements B a) where ev-double-lift-family-of-elements : - ((x : A) (y : B x) → C x y) → double-lift-family-of-elements b C + ((x : A) (y : B x) → C x y) → double-lift-family-of-elements C b ev-double-lift-family-of-elements h i = h (a i) (b i) ``` @@ -99,10 +99,10 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} (b : dependent-lift-family-of-elements a B) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} (C : (i : I) (x : A i) (y : B i x) → UU l4) - (c : dependent-double-lift-family-of-elements b C) + {a : (i : I) → A i} (b : dependent-lift-family-of-elements B a) + (c : dependent-double-lift-family-of-elements C b) where is-extension-dependent-double-lift-family-of-elements : @@ -116,11 +116,11 @@ module _ ( is-extension-dependent-double-lift-family-of-elements) module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} {b : dependent-lift-family-of-elements a B} + {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} {C : (i : I) (x : A i) (y : B i x) → UU l4} - {c : dependent-double-lift-family-of-elements b C} - (f : extension-dependent-double-lift-family-of-elements b C c) + {a : (i : I) → A i} {b : dependent-lift-family-of-elements B a} + {c : dependent-double-lift-family-of-elements C b} + (f : extension-dependent-double-lift-family-of-elements C b c) where family-of-elements-extension-dependent-double-lift-family-of-elements : @@ -129,7 +129,7 @@ module _ pr1 f is-extension-extension-dependent-double-lift-family-of-elements : - is-extension-dependent-double-lift-family-of-elements b C c + is-extension-dependent-double-lift-family-of-elements C b c ( family-of-elements-extension-dependent-double-lift-family-of-elements) is-extension-extension-dependent-double-lift-family-of-elements = pr2 f ``` @@ -138,9 +138,10 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} (b : lift-family-of-elements a B) - (C : (x : A) (y : B x) → UU l4) (c : double-lift-family-of-elements b C) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + (C : (x : A) (y : B x) → UU l4) + {a : I → A} (b : lift-family-of-elements B a) + (c : double-lift-family-of-elements C b) where is-extension-double-lift-family-of-elements : @@ -153,10 +154,11 @@ module _ Σ ((x : A) (y : B x) → C x y) is-extension-double-lift-family-of-elements module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} {b : lift-family-of-elements a B} - {C : (x : A) (y : B x) → UU l4} {c : double-lift-family-of-elements b C} - (f : extension-double-lift-family-of-elements b C c) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + {C : (x : A) (y : B x) → UU l4} + {a : I → A} {b : lift-family-of-elements B a} + {c : double-lift-family-of-elements C b} + (f : extension-double-lift-family-of-elements C b c) where family-of-elements-extension-double-lift-family-of-elements : @@ -164,7 +166,7 @@ module _ family-of-elements-extension-double-lift-family-of-elements = pr1 f is-extension-extension-double-lift-family-of-elements : - is-extension-double-lift-family-of-elements b C c + is-extension-double-lift-family-of-elements C b c ( family-of-elements-extension-double-lift-family-of-elements) is-extension-extension-double-lift-family-of-elements = pr2 f ``` @@ -173,12 +175,12 @@ module _ ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} (b : dependent-lift-family-of-elements a B) + {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} + {a : (i : I) → A i} (b : dependent-lift-family-of-elements B a) where id-extension-dependent-double-lift-family-of-elements : - extension-dependent-double-lift-family-of-elements b (λ i x y → B i x) b + extension-dependent-double-lift-family-of-elements (λ i x y → B i x) b b pr1 id-extension-dependent-double-lift-family-of-elements i x = id pr2 id-extension-dependent-double-lift-family-of-elements = refl-htpy ``` @@ -187,12 +189,12 @@ module _ ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} (b : lift-family-of-elements a B) + {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + {a : I → A} (b : lift-family-of-elements B a) where id-extension-double-lift-family-of-elements : - extension-double-lift-family-of-elements b (λ x (y : B x) → B x) b + extension-double-lift-family-of-elements (λ x (y : B x) → B x) b b pr1 id-extension-double-lift-family-of-elements x = id pr2 id-extension-double-lift-family-of-elements = refl-htpy ``` @@ -202,17 +204,21 @@ module _ ```agda module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} - {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} {b : dependent-lift-family-of-elements a B} - {C : (i : I) → A i → UU l4} {c : dependent-lift-family-of-elements a C} - {D : (i : I) → A i → UU l5} {d : dependent-lift-family-of-elements a D} + {A : I → UU l2} {B : (i : I) → A i → UU l3} {C : (i : I) → A i → UU l4} + {D : (i : I) → A i → UU l5} + {a : (i : I) → A i} + {b : dependent-lift-family-of-elements B a} + {c : dependent-lift-family-of-elements C a} + {d : dependent-lift-family-of-elements D a} (g : - extension-dependent-double-lift-family-of-elements c + extension-dependent-double-lift-family-of-elements ( λ i x (_ : C i x) → D i x) + ( c) ( d)) (f : - extension-dependent-double-lift-family-of-elements b + extension-dependent-double-lift-family-of-elements ( λ i x (_ : B i x) → C i x) + ( b) ( c)) where @@ -226,8 +232,9 @@ module _ f i x is-extension-comp-extension-dependent-double-lift-family-of-elements : - is-extension-dependent-double-lift-family-of-elements b + is-extension-dependent-double-lift-family-of-elements ( λ i x _ → D i x) + ( b) ( d) ( family-of-elements-comp-extension-dependent-double-lift-family-of-elements) is-extension-comp-extension-dependent-double-lift-family-of-elements i = @@ -238,8 +245,9 @@ module _ ( is-extension-extension-dependent-double-lift-family-of-elements g i) comp-extension-dependent-double-lift-family-of-elements : - extension-dependent-double-lift-family-of-elements b + extension-dependent-double-lift-family-of-elements ( λ i x (_ : B i x) → D i x) + ( b) ( d) pr1 comp-extension-dependent-double-lift-family-of-elements = family-of-elements-comp-extension-dependent-double-lift-family-of-elements @@ -251,12 +259,12 @@ module _ ```agda module _ - {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} {b : lift-family-of-elements a B} - {C : A → UU l4} {c : lift-family-of-elements a C} - {D : A → UU l5} {d : lift-family-of-elements a D} - (g : extension-double-lift-family-of-elements c (λ x (_ : C x) → D x) d) - (f : extension-double-lift-family-of-elements b (λ x (_ : B x) → C x) c) + {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + {C : A → UU l4} {D : A → UU l5} + {a : I → A} {b : lift-family-of-elements B a} + {c : lift-family-of-elements C a} {d : lift-family-of-elements D a} + (g : extension-double-lift-family-of-elements (λ x (_ : C x) → D x) c d) + (f : extension-double-lift-family-of-elements (λ x (_ : B x) → C x) b c) where family-of-elements-comp-extension-double-lift-family-of-elements : @@ -266,8 +274,9 @@ module _ family-of-elements-extension-double-lift-family-of-elements f x is-extension-comp-extension-double-lift-family-of-elements : - is-extension-double-lift-family-of-elements b + is-extension-double-lift-family-of-elements ( λ x _ → D x) + ( b) ( d) ( family-of-elements-comp-extension-double-lift-family-of-elements) is-extension-comp-extension-double-lift-family-of-elements i = @@ -277,7 +286,7 @@ module _ ( is-extension-extension-double-lift-family-of-elements g i) comp-extension-double-lift-family-of-elements : - extension-double-lift-family-of-elements b (λ x (_ : B x) → D x) d + extension-double-lift-family-of-elements (λ x (_ : B x) → D x) b d pr1 comp-extension-double-lift-family-of-elements = family-of-elements-comp-extension-double-lift-family-of-elements pr2 comp-extension-double-lift-family-of-elements = diff --git a/src/orthogonal-factorization-systems/extensions-lifts-families-of-elements.lagda.md b/src/orthogonal-factorization-systems/extensions-lifts-families-of-elements.lagda.md index f7998568ba..6d5980be63 100644 --- a/src/orthogonal-factorization-systems/extensions-lifts-families-of-elements.lagda.md +++ b/src/orthogonal-factorization-systems/extensions-lifts-families-of-elements.lagda.md @@ -67,20 +67,20 @@ defined by `b ↦ (λ i → b i (a i))`. ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} (a : (i : I) → A i) - {B : (i : I) → A i → UU l3} + {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} + (a : (i : I) → A i) where ev-dependent-lift-family-of-elements : - ((i : I) (x : A i) → B i x) → dependent-lift-family-of-elements a B + ((i : I) (x : A i) → B i x) → dependent-lift-family-of-elements B a ev-dependent-lift-family-of-elements b i = b i (a i) module _ - {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} (a : I → A) {B : A → UU l3} + {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} (a : I → A) where ev-lift-family-of-elements : - ((x : A) → B x) → lift-family-of-elements a B + ((x : A) → B x) → lift-family-of-elements B a ev-lift-family-of-elements b i = b (a i) ``` @@ -88,8 +88,8 @@ module _ ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} (a : (i : I) → A i) - (B : (i : I) → A i → UU l3) (b : dependent-lift-family-of-elements a B) + {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} (B : (i : I) → A i → UU l3) + (a : (i : I) → A i) (b : dependent-lift-family-of-elements B a) where is-extension-dependent-lift-family-of-elements : @@ -102,9 +102,9 @@ module _ Σ ((i : I) (x : A i) → B i x) is-extension-dependent-lift-family-of-elements module _ - {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {a : (i : I) → A i} - {B : (i : I) → A i → UU l3} {b : dependent-lift-family-of-elements a B} - (f : extension-dependent-lift-family-of-elements a B b) + {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} + {a : (i : I) → A i} {b : dependent-lift-family-of-elements B a} + (f : extension-dependent-lift-family-of-elements B a b) where family-of-elements-extension-dependent-lift-family-of-elements : @@ -112,7 +112,7 @@ module _ family-of-elements-extension-dependent-lift-family-of-elements = pr1 f is-extension-extension-dependent-lift-family-of-elements : - is-extension-dependent-lift-family-of-elements a B b + is-extension-dependent-lift-family-of-elements B a b ( family-of-elements-extension-dependent-lift-family-of-elements) is-extension-extension-dependent-lift-family-of-elements = pr2 f ``` @@ -121,8 +121,8 @@ module _ ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} (a : I → A) - (B : A → UU l3) (b : lift-family-of-elements a B) + {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} (B : A → UU l3) + (a : I → A) (b : lift-family-of-elements B a) where is-extension-lift-family-of-elements : (f : (x : A) → B x) → UU (l1 ⊔ l3) @@ -133,16 +133,16 @@ module _ Σ ((x : A) → B x) is-extension-lift-family-of-elements module _ - {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {a : I → A} - {B : A → UU l3} {b : lift-family-of-elements a B} - (f : extension-lift-family-of-elements a B b) + {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + {a : I → A} {b : lift-family-of-elements B a} + (f : extension-lift-family-of-elements B a b) where family-of-elements-extension-lift-family-of-elements : (x : A) → B x family-of-elements-extension-lift-family-of-elements = pr1 f is-extension-extension-lift-family-of-elements : - is-extension-lift-family-of-elements a B b + is-extension-lift-family-of-elements B a b ( family-of-elements-extension-lift-family-of-elements) is-extension-extension-lift-family-of-elements = pr2 f ``` @@ -155,7 +155,7 @@ module _ where id-extension-dependent-lift-family-of-elements : - extension-dependent-lift-family-of-elements a (λ i _ → A i) a + extension-dependent-lift-family-of-elements (λ i _ → A i) a a pr1 id-extension-dependent-lift-family-of-elements i = id pr2 id-extension-dependent-lift-family-of-elements = refl-htpy ``` @@ -168,7 +168,7 @@ module _ where id-extension-lift-family-of-elements : - extension-lift-family-of-elements a (λ _ → A) a + extension-lift-family-of-elements (λ _ → A) a a pr1 id-extension-lift-family-of-elements = id pr2 id-extension-lift-family-of-elements = refl-htpy ``` @@ -213,11 +213,10 @@ extensions of `b` along `a` to obtain extensions of `c` along `a`. ```agda module _ {l1 l2 l3 l4 : Level} {I : UU l1} - {A : I → UU l2} {a : (i : I) → A i} - {B : I → UU l3} {b : (i : I) → B i} - {C : I → UU l4} {c : (i : I) → C i} - (g : extension-dependent-lift-family-of-elements b (λ i _ → C i) c) - (f : extension-dependent-lift-family-of-elements a (λ i _ → B i) b) + {A : I → UU l2} {B : I → UU l3} {C : I → UU l4} + {a : (i : I) → A i} {b : (i : I) → B i} {c : (i : I) → C i} + (g : extension-dependent-lift-family-of-elements (λ i _ → C i) b c) + (f : extension-dependent-lift-family-of-elements (λ i _ → B i) a b) where family-of-elements-comp-extension-dependent-lift-family-of-elements : @@ -227,8 +226,9 @@ module _ family-of-elements-extension-dependent-lift-family-of-elements f i is-extension-comp-extension-dependent-lift-family-of-elements : - is-extension-dependent-lift-family-of-elements a + is-extension-dependent-lift-family-of-elements ( λ i _ → C i) + ( a) ( c) ( family-of-elements-comp-extension-dependent-lift-family-of-elements) is-extension-comp-extension-dependent-lift-family-of-elements i = @@ -238,7 +238,7 @@ module _ ( is-extension-extension-dependent-lift-family-of-elements g i) comp-extension-dependent-lift-family-of-elements : - extension-dependent-lift-family-of-elements a (λ i _ → C i) c + extension-dependent-lift-family-of-elements (λ i _ → C i) a c pr1 comp-extension-dependent-lift-family-of-elements = family-of-elements-comp-extension-dependent-lift-family-of-elements pr2 comp-extension-dependent-lift-family-of-elements = @@ -274,11 +274,10 @@ The composite `g ∘ f` is then an extension of `c` along `a. ```agda module _ {l1 l2 l3 l4 : Level} {I : UU l1} - {A : UU l2} {a : I → A} - {B : UU l3} {b : I → B} - {C : UU l4} {c : I → C} - (g : extension-lift-family-of-elements b (λ _ → C) c) - (f : extension-lift-family-of-elements a (λ _ → B) b) + {A : UU l2} {B : UU l3} {C : UU l4} + {a : I → A} {b : I → B} {c : I → C} + (g : extension-lift-family-of-elements (λ _ → C) b c) + (f : extension-lift-family-of-elements (λ _ → B) a b) where map-comp-extension-lift-family-of-elements : A → C @@ -287,8 +286,9 @@ module _ family-of-elements-extension-lift-family-of-elements f is-extension-comp-extension-lift-family-of-elements : - is-extension-lift-family-of-elements a + is-extension-lift-family-of-elements ( λ _ → C) + ( a) ( c) ( map-comp-extension-lift-family-of-elements) is-extension-comp-extension-lift-family-of-elements x = @@ -298,7 +298,7 @@ module _ ( is-extension-extension-lift-family-of-elements g x) comp-extension-lift-family-of-elements : - extension-lift-family-of-elements a (λ _ → C) c + extension-lift-family-of-elements (λ _ → C) a c pr1 comp-extension-lift-family-of-elements = map-comp-extension-lift-family-of-elements pr2 comp-extension-lift-family-of-elements = diff --git a/src/orthogonal-factorization-systems/lifts-families-of-elements.lagda.md b/src/orthogonal-factorization-systems/lifts-families-of-elements.lagda.md index e3a3aa1f13..6155ddf59e 100644 --- a/src/orthogonal-factorization-systems/lifts-families-of-elements.lagda.md +++ b/src/orthogonal-factorization-systems/lifts-families-of-elements.lagda.md @@ -14,12 +14,14 @@ open import foundation.universe-levels ## Idea -Consider a family of elements `a : (i : I) → A i` and a type family +Consider a type family ```text - B : (i : I) → A i → 𝒰. + B : (i : I) → A i → 𝒰 ``` +and a family of elements `a : (i : I) → A i`. + A {{#concept "dependent lift" Disambiguation="family of elements"}} of the family of elements `a` to the type family `B` is a family of elements @@ -42,8 +44,8 @@ elements `a` is a family of elements ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} (a : (i : I) → A i) - (B : (i : I) → A i → UU l3) + {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} (B : (i : I) → A i → UU l3) + (a : (i : I) → A i) where dependent-lift-family-of-elements : UU (l1 ⊔ l3) @@ -54,37 +56,37 @@ module _ ```agda module _ - {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} (a : I → A) (B : A → UU l3) + {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} (B : A → UU l3) (a : I → A) where lift-family-of-elements : UU (l1 ⊔ l3) - lift-family-of-elements = dependent-lift-family-of-elements a (λ _ → B) + lift-family-of-elements = dependent-lift-family-of-elements (λ _ → B) a ``` ### Dependent lifts of binary families of elements ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} (a : (i : I) → A i) - {B : (i : I) → A i → UU l3} (C : (i : I) (x : A i) → B i x → UU l4) + {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : (i : I) → A i → UU l3} + (C : (i : I) (x : A i) → B i x → UU l4) (a : (i : I) → A i) where dependent-lift-binary-family-of-elements : UU (l1 ⊔ l3 ⊔ l4) dependent-lift-binary-family-of-elements = - dependent-lift-family-of-elements a (λ i x → (y : B i x) → C i x y) + dependent-lift-family-of-elements (λ i x → (y : B i x) → C i x y) a ``` ### Lifts of binary families of elements ```agda module _ - {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} (a : I → A) - {B : A → UU l3} {C : (x : A) → B x → UU l4} + {l1 l2 l3 l4 : Level} {I : UU l1} {A : UU l2} {B : A → UU l3} + {C : (x : A) → B x → UU l4} (a : I → A) where lift-binary-family-of-elements : UU (l1 ⊔ l3 ⊔ l4) lift-binary-family-of-elements = - dependent-lift-binary-family-of-elements a (λ _ → C) + dependent-lift-binary-family-of-elements (λ _ → C) a ``` ## See also