diff --git a/src/foundation-core/contractible-types.lagda.md b/src/foundation-core/contractible-types.lagda.md index 55bb4cc7d1..5e457cbe84 100644 --- a/src/foundation-core/contractible-types.lagda.md +++ b/src/foundation-core/contractible-types.lagda.md @@ -248,9 +248,7 @@ abstract ((x : A) → is-contr (B x)) → is-contr ((x : A) → B x) pr1 (is-contr-Π {A = A} {B = B} H) x = center (H x) pr2 (is-contr-Π {A = A} {B = B} H) f = - map-inv-is-equiv - ( funext (λ x → center (H x)) f) - ( λ x → contraction (H x) (f x)) + eq-htpy (λ x → contraction (H x) (f x)) abstract is-contr-implicit-Π : diff --git a/src/foundation/function-extensionality.lagda.md b/src/foundation/function-extensionality.lagda.md index 7ba761bdd8..5633842ad1 100644 --- a/src/foundation/function-extensionality.lagda.md +++ b/src/foundation/function-extensionality.lagda.md @@ -14,10 +14,13 @@ open import foundation.evaluation-functions open import foundation.implicit-function-types open import foundation.universe-levels +open import foundation-core.coherently-invertible-maps open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types +open import foundation-core.retractions +open import foundation-core.sections ``` @@ -127,9 +130,37 @@ function-extensionality-Level l1 l2 = ```agda function-extensionality : UUω function-extensionality = {l1 l2 : Level} → function-extensionality-Level l1 l2 +``` + +Rather than postulating a witness of `function-extensionality` directly, we +postulate the constituents of a coherent two-sided inverse to `htpy-eq`. The +benefits are that we end up with a single converse map to `htpy-eq`, rather than +a separate section and retraction, although they would be homotopic regardless. +In addition, this formulation helps Agda display goals involving function +extensionality in a more readable way. + +```agda +module _ + {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} + where -postulate - funext : function-extensionality + postulate + eq-htpy : f ~ g → f = g + + is-section-eq-htpy : is-section htpy-eq eq-htpy + + is-retraction-eq-htpy' : is-retraction htpy-eq eq-htpy + + coh-eq-htpy' : + coherence-is-coherently-invertible + ( htpy-eq) + ( eq-htpy) + ( is-section-eq-htpy) + ( is-retraction-eq-htpy') + +funext : function-extensionality +funext f g = + is-equiv-is-invertible eq-htpy is-section-eq-htpy is-retraction-eq-htpy' module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} @@ -139,25 +170,19 @@ module _ pr1 (equiv-funext) = htpy-eq pr2 (equiv-funext {f} {g}) = funext f g - eq-htpy : {f g : (x : A) → B x} → f ~ g → f = g - eq-htpy {f} {g} = map-inv-is-equiv (funext f g) + is-equiv-eq-htpy : + (f g : (x : A) → B x) → is-equiv (eq-htpy {f = f} {g}) + is-equiv-eq-htpy f g = + is-equiv-is-invertible htpy-eq is-retraction-eq-htpy' is-section-eq-htpy abstract - is-section-eq-htpy : - {f g : (x : A) → B x} → (htpy-eq ∘ eq-htpy {f} {g}) ~ id - is-section-eq-htpy {f} {g} = is-section-map-inv-is-equiv (funext f g) - is-retraction-eq-htpy : - {f g : (x : A) → B x} → (eq-htpy ∘ htpy-eq {f = f} {g = g}) ~ id + {f g : (x : A) → B x} → is-retraction (htpy-eq {f = f} {g}) eq-htpy is-retraction-eq-htpy {f} {g} = is-retraction-map-inv-is-equiv (funext f g) - is-equiv-eq-htpy : - (f g : (x : A) → B x) → is-equiv (eq-htpy {f} {g}) - is-equiv-eq-htpy f g = is-equiv-map-inv-is-equiv (funext f g) - - eq-htpy-refl-htpy : - (f : (x : A) → B x) → eq-htpy (refl-htpy {f = f}) = refl - eq-htpy-refl-htpy f = is-retraction-eq-htpy refl + eq-htpy-refl-htpy : + (f : (x : A) → B x) → eq-htpy (refl-htpy {f = f}) = refl + eq-htpy-refl-htpy f = is-retraction-eq-htpy refl equiv-eq-htpy : {f g : (x : A) → B x} → (f ~ g) ≃ (f = g) pr1 (equiv-eq-htpy {f} {g}) = eq-htpy diff --git a/src/foundation/identity-systems.lagda.md b/src/foundation/identity-systems.lagda.md index 44e04f05f9..9f1f3c9ff0 100644 --- a/src/foundation/identity-systems.lagda.md +++ b/src/foundation/identity-systems.lagda.md @@ -9,13 +9,17 @@ module foundation.identity-systems where ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types +open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.families-of-equivalences +open import foundation-core.function-types +open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.propositions +open import foundation-core.retractions open import foundation-core.sections open import foundation-core.torsorial-type-families open import foundation-core.transport-along-identifications @@ -79,27 +83,38 @@ module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) (b : B a) where + map-section-is-identity-system-is-torsorial : + is-torsorial B → + {l3 : Level} (P : (x : A) (y : B x) → UU l3) → + P a b → (x : A) (y : B x) → P x y + map-section-is-identity-system-is-torsorial H P p x y = + tr (fam-Σ P) (eq-is-contr H) p + + is-section-map-section-is-identity-system-is-torsorial : + (H : is-torsorial B) → + {l3 : Level} (P : (x : A) (y : B x) → UU l3) → + is-section + ( ev-refl-identity-system b) + ( map-section-is-identity-system-is-torsorial H P) + is-section-map-section-is-identity-system-is-torsorial H P p = + ap + ( λ t → tr (fam-Σ P) t p) + ( eq-is-contr' + ( is-prop-is-contr H (a , b) (a , b)) + ( eq-is-contr H) + ( refl)) + abstract is-identity-system-is-torsorial : - (H : is-torsorial B) → is-identity-system B a b - pr1 (is-identity-system-is-torsorial H P) p x y = - tr - ( fam-Σ P) - ( eq-is-contr H) - ( p) - pr2 (is-identity-system-is-torsorial H P) p = - ap - ( λ t → tr (fam-Σ P) t p) - ( eq-is-contr' - ( is-prop-is-contr H (a , b) (a , b)) - ( eq-is-contr H) - ( refl)) + is-torsorial B → is-identity-system B a b + is-identity-system-is-torsorial H P = + ( map-section-is-identity-system-is-torsorial H P , + is-section-map-section-is-identity-system-is-torsorial H P) abstract is-torsorial-is-identity-system : is-identity-system B a b → is-torsorial B - pr1 (pr1 (is-torsorial-is-identity-system H)) = a - pr2 (pr1 (is-torsorial-is-identity-system H)) = b + pr1 (is-torsorial-is-identity-system H) = (a , b) pr2 (is-torsorial-is-identity-system H) (x , y) = pr1 (H (λ x' y' → (a , b) = (x' , y'))) refl x y diff --git a/src/foundation/univalence.lagda.md b/src/foundation/univalence.lagda.md index d2ea5cb549..7b5a2bf621 100644 --- a/src/foundation/univalence.lagda.md +++ b/src/foundation/univalence.lagda.md @@ -16,6 +16,7 @@ open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.universe-levels +open import foundation-core.coherently-invertible-maps open import foundation-core.contractible-types open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types @@ -39,11 +40,37 @@ that the map `(A = B) → (A ≃ B)` is an In this file we postulate the univalence axiom. Its statement is defined in [`foundation-core.univalence`](foundation-core.univalence.md). -## Postulate +## Postulates + +Rather than postulating a witness of `univalence-axiom` directly, we postulate +the constituents of a coherent two-sided inverse to `equiv-eq`. The benefits are +that we end up with a single converse map to `equiv-eq`, rather than a separate +section and retraction, although they would be homotopic regardless. In +addition, this formulation helps Agda display goals involving the univalence +axiom in a more readable way. ```agda -postulate - univalence : univalence-axiom +module _ + {l : Level} {A B : UU l} + where + + postulate + eq-equiv : A ≃ B → A = B + + is-section-eq-equiv : is-section equiv-eq eq-equiv + + is-retraction-eq-equiv' : is-retraction equiv-eq eq-equiv + + coh-eq-equiv' : + coherence-is-coherently-invertible + ( equiv-eq) + ( eq-equiv) + ( is-section-eq-equiv) + ( is-retraction-eq-equiv') + +univalence : univalence-axiom +univalence A B = + is-equiv-is-invertible eq-equiv is-section-eq-equiv is-retraction-eq-equiv' ``` ## Properties @@ -57,14 +84,8 @@ module _ pr1 equiv-univalence = equiv-eq pr2 equiv-univalence = univalence A B - eq-equiv : A ≃ B → A = B - eq-equiv = map-inv-is-equiv (univalence A B) - abstract - is-section-eq-equiv : is-section equiv-eq eq-equiv - is-section-eq-equiv = is-section-map-inv-is-equiv (univalence A B) - - is-retraction-eq-equiv : is-retraction equiv-eq eq-equiv + is-retraction-eq-equiv : is-retraction (equiv-eq {A = A} {B}) eq-equiv is-retraction-eq-equiv = is-retraction-map-inv-is-equiv (univalence A B) @@ -72,8 +93,9 @@ module _ {l : Level} where - is-equiv-eq-equiv : (A B : UU l) → is-equiv (eq-equiv) - is-equiv-eq-equiv A B = is-equiv-map-inv-is-equiv (univalence A B) + is-equiv-eq-equiv : (A B : UU l) → is-equiv (eq-equiv {A = A} {B}) + is-equiv-eq-equiv A B = + is-equiv-is-invertible equiv-eq is-retraction-eq-equiv' is-section-eq-equiv compute-eq-equiv-id-equiv : (A : UU l) → eq-equiv {A = A} id-equiv = refl compute-eq-equiv-id-equiv A = is-retraction-eq-equiv refl