diff --git a/src/foundation-core/commuting-squares-of-maps.lagda.md b/src/foundation-core/commuting-squares-of-maps.lagda.md index de050e312c..ab4d844e0a 100644 --- a/src/foundation-core/commuting-squares-of-maps.lagda.md +++ b/src/foundation-core/commuting-squares-of-maps.lagda.md @@ -35,12 +35,16 @@ is said to commute if there is a homotopy between both composites. ## Definitions ```agda -coherence-square-maps : +module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} - (top : C → B) (left : C → A) (right : B → X) (bottom : A → X) → - UU (l3 ⊔ l4) -coherence-square-maps top left right bottom = - bottom ∘ left ~ right ∘ top + (top : C → B) (left : C → A) (right : B → X) (bottom : A → X) + where + + coherence-square-maps : UU (l3 ⊔ l4) + coherence-square-maps = bottom ∘ left ~ right ∘ top + + coherence-square-maps' : UU (l3 ⊔ l4) + coherence-square-maps' = right ∘ top ~ bottom ∘ left ``` ## Properties diff --git a/src/foundation-core/equality-dependent-pair-types.lagda.md b/src/foundation-core/equality-dependent-pair-types.lagda.md index 9cf8a462d2..2fbbc0134c 100644 --- a/src/foundation-core/equality-dependent-pair-types.lagda.md +++ b/src/foundation-core/equality-dependent-pair-types.lagda.md @@ -72,9 +72,12 @@ module _ {x : A} {s t : B x} → s = t → (x , s) = (x , t) eq-pair-eq-pr2 {x} = ap {B = Σ A B} (pair x) + ap-pr1-eq-pair-eq-pr2 : + {x : A} {s t : B x} (p : s = t) → ap pr1 (eq-pair-eq-pr2 p) = refl + ap-pr1-eq-pair-eq-pr2 refl = refl + is-retraction-pair-eq-Σ : - (s t : Σ A B) → - ((pair-eq-Σ {s} {t}) ∘ (eq-pair-Σ' {s} {t})) ~ id {A = Eq-Σ s t} + (s t : Σ A B) → pair-eq-Σ {s} {t} ∘ eq-pair-Σ' {s} {t} ~ id {A = Eq-Σ s t} is-retraction-pair-eq-Σ (pair x y) (pair .x .y) (pair refl refl) = refl is-section-pair-eq-Σ : @@ -104,7 +107,7 @@ module _ equiv-pair-eq-Σ s t = pair pair-eq-Σ (is-equiv-pair-eq-Σ s t) η-pair : (t : Σ A B) → (pair (pr1 t) (pr2 t)) = t - η-pair t = eq-pair-Σ refl refl + η-pair t = refl eq-base-eq-pair : {s t : Σ A B} → (s = t) → (pr1 s = pr1 t) eq-base-eq-pair p = pr1 (pair-eq-Σ p) diff --git a/src/foundation-core/fibers-of-maps.lagda.md b/src/foundation-core/fibers-of-maps.lagda.md index 255a9c8c24..1cf60c7926 100644 --- a/src/foundation-core/fibers-of-maps.lagda.md +++ b/src/foundation-core/fibers-of-maps.lagda.md @@ -53,7 +53,7 @@ module _ where Eq-fiber : fiber f b → fiber f b → UU (l1 ⊔ l2) - Eq-fiber s t = Σ (pr1 s = pr1 t) (λ α → ((ap f α) ∙ (pr2 t)) = (pr2 s)) + Eq-fiber s t = Σ (pr1 s = pr1 t) (λ α → ap f α ∙ pr2 t = pr2 s) refl-Eq-fiber : (s : fiber f b) → Eq-fiber s s pr1 (refl-Eq-fiber s) = refl @@ -66,16 +66,15 @@ module _ eq-Eq-fiber-uncurry (refl , refl) = refl eq-Eq-fiber : - {s t : fiber f b} (α : pr1 s = pr1 t) → - ((ap f α) ∙ (pr2 t)) = pr2 s → s = t + {s t : fiber f b} (α : pr1 s = pr1 t) → ap f α ∙ pr2 t = pr2 s → s = t eq-Eq-fiber α β = eq-Eq-fiber-uncurry (α , β) is-section-eq-Eq-fiber : - {s t : fiber f b} → (Eq-eq-fiber {s} {t} ∘ eq-Eq-fiber-uncurry {s} {t}) ~ id + {s t : fiber f b} → Eq-eq-fiber {s} {t} ∘ eq-Eq-fiber-uncurry {s} {t} ~ id is-section-eq-Eq-fiber (refl , refl) = refl is-retraction-eq-Eq-fiber : - {s t : fiber f b} → (eq-Eq-fiber-uncurry {s} {t} ∘ Eq-eq-fiber {s} {t}) ~ id + {s t : fiber f b} → eq-Eq-fiber-uncurry {s} {t} ∘ Eq-eq-fiber {s} {t} ~ id is-retraction-eq-Eq-fiber refl = refl abstract @@ -112,7 +111,7 @@ module _ where Eq-fiber' : fiber' f b → fiber' f b → UU (l1 ⊔ l2) - Eq-fiber' s t = Σ (pr1 s = pr1 t) (λ α → (pr2 t = ((pr2 s) ∙ (ap f α)))) + Eq-fiber' s t = Σ (pr1 s = pr1 t) (λ α → pr2 t = pr2 s ∙ ap f α) refl-Eq-fiber' : (s : fiber' f b) → Eq-fiber' s s pr1 (refl-Eq-fiber' s) = refl @@ -126,18 +125,17 @@ module _ ap (pair x) (inv right-unit) eq-Eq-fiber' : - {s t : fiber' f b} (α : pr1 s = pr1 t) → - (pr2 t) = ((pr2 s) ∙ (ap f α)) → s = t + {s t : fiber' f b} (α : pr1 s = pr1 t) → pr2 t = pr2 s ∙ ap f α → s = t eq-Eq-fiber' α β = eq-Eq-fiber-uncurry' (α , β) is-section-eq-Eq-fiber' : {s t : fiber' f b} → - (Eq-eq-fiber' {s} {t} ∘ eq-Eq-fiber-uncurry' {s} {t}) ~ id + Eq-eq-fiber' {s} {t} ∘ eq-Eq-fiber-uncurry' {s} {t} ~ id is-section-eq-Eq-fiber' {x , refl} (refl , refl) = refl is-retraction-eq-Eq-fiber' : {s t : fiber' f b} → - (eq-Eq-fiber-uncurry' {s} {t} ∘ Eq-eq-fiber' {s} {t}) ~ id + eq-Eq-fiber-uncurry' {s} {t} ∘ Eq-eq-fiber' {s} {t} ~ id is-retraction-eq-Eq-fiber' {x , refl} refl = refl abstract @@ -182,11 +180,10 @@ module _ pr1 (map-inv-equiv-fiber (x , refl)) = x pr2 (map-inv-equiv-fiber (x , refl)) = refl - is-section-map-inv-equiv-fiber : (map-equiv-fiber ∘ map-inv-equiv-fiber) ~ id + is-section-map-inv-equiv-fiber : map-equiv-fiber ∘ map-inv-equiv-fiber ~ id is-section-map-inv-equiv-fiber (x , refl) = refl - is-retraction-map-inv-equiv-fiber : - (map-inv-equiv-fiber ∘ map-equiv-fiber) ~ id + is-retraction-map-inv-equiv-fiber : map-inv-equiv-fiber ∘ map-equiv-fiber ~ id is-retraction-map-inv-equiv-fiber (x , refl) = refl is-equiv-map-equiv-fiber : is-equiv map-equiv-fiber @@ -315,13 +312,11 @@ module _ inv-map-compute-fiber-comp : Σ (fiber g x) (λ t → fiber h (pr1 t)) → fiber (g ∘ h) x pr1 (inv-map-compute-fiber-comp t) = pr1 (pr2 t) - pr2 (inv-map-compute-fiber-comp t) = - ap g (pr2 (pr2 t)) ∙ pr2 (pr1 t) + pr2 (inv-map-compute-fiber-comp t) = ap g (pr2 (pr2 t)) ∙ pr2 (pr1 t) is-section-inv-map-compute-fiber-comp : (map-compute-fiber-comp ∘ inv-map-compute-fiber-comp) ~ id - is-section-inv-map-compute-fiber-comp - ((.(h a) , refl) , (a , refl)) = refl + is-section-inv-map-compute-fiber-comp ((.(h a) , refl) , (a , refl)) = refl is-retraction-inv-map-compute-fiber-comp : (inv-map-compute-fiber-comp ∘ map-compute-fiber-comp) ~ id diff --git a/src/foundation-core/identity-types.lagda.md b/src/foundation-core/identity-types.lagda.md index 236c8d76ea..6583fc23e9 100644 --- a/src/foundation-core/identity-types.lagda.md +++ b/src/foundation-core/identity-types.lagda.md @@ -156,15 +156,19 @@ module _ ### Transposing inverses ```agda -left-transpose-eq-concat : - {l : Level} {A : UU l} {x y : A} (p : x = y) {z : A} (q : y = z) - (r : x = z) → ((p ∙ q) = r) → q = ((inv p) ∙ r) -left-transpose-eq-concat refl q r s = s - -right-transpose-eq-concat : - {l : Level} {A : UU l} {x y : A} (p : x = y) {z : A} (q : y = z) - (r : x = z) → ((p ∙ q) = r) → p = (r ∙ (inv q)) -right-transpose-eq-concat p refl r s = ((inv right-unit) ∙ s) ∙ (inv right-unit) +module _ + {l : Level} {A : UU l} {x y : A} + where + + left-transpose-eq-concat : + (p : x = y) {z : A} (q : y = z) (r : x = z) → + p ∙ q = r → q = inv p ∙ r + left-transpose-eq-concat refl q r s = s + + right-transpose-eq-concat : + (p : x = y) {z : A} (q : y = z) (r : x = z) → + p ∙ q = r → p = r ∙ inv q + right-transpose-eq-concat p refl r s = (inv right-unit ∙ s) ∙ inv right-unit ``` The fact that `left-transpose-eq-concat` and `right-transpose-eq-concat` are diff --git a/src/foundation-core/retractions.lagda.md b/src/foundation-core/retractions.lagda.md index 051bdea2a5..b852838a58 100644 --- a/src/foundation-core/retractions.lagda.md +++ b/src/foundation-core/retractions.lagda.md @@ -26,7 +26,9 @@ A **retraction** is a map that has a right inverse, i.e. a section. Thus, homotopic to the identity at `A`. Moreover, in this case we say that `A` _is a retract of_ `B`. -## Definition +## Definitions + +### The type of retractions ```agda module _ @@ -40,11 +42,14 @@ module _ map-retraction f = pr1 is-retraction-map-retraction : - (f : A → B) (r : retraction f) → (map-retraction f r ∘ f) ~ id + (f : A → B) (r : retraction f) → map-retraction f r ∘ f ~ id is-retraction-map-retraction f = pr2 +``` -_retract-of_ : - {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) +### Retracts of a type + +```agda +_retract-of_ : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) A retract-of B = Σ (A → B) retraction module _ @@ -58,13 +63,12 @@ module _ (R : A retract-of B) → retraction (section-retract-of R) retraction-section-retract-of = pr2 - retraction-retract-of : (A retract-of B) → B → A + retraction-retract-of : A retract-of B → B → A retraction-retract-of R = pr1 (retraction-section-retract-of R) - is-retraction-retraction-retract-of : - (R : A retract-of B) → - (retraction-retract-of R ∘ section-retract-of R) ~ id - is-retraction-retraction-retract-of R = pr2 (retraction-section-retract-of R) + is-retract-retract-of : + (R : A retract-of B) → retraction-retract-of R ∘ section-retract-of R ~ id + is-retract-retract-of R = pr2 (retraction-section-retract-of R) ``` ## Properties diff --git a/src/foundation/commuting-squares-of-homotopies.lagda.md b/src/foundation/commuting-squares-of-homotopies.lagda.md index c14f9bbf33..a6459cf3fa 100644 --- a/src/foundation/commuting-squares-of-homotopies.lagda.md +++ b/src/foundation/commuting-squares-of-homotopies.lagda.md @@ -24,11 +24,11 @@ A square of [homotopies](foundation-core.homotopies.md) | | left | | right v v - z ------> i + h ------> i bottom ``` -is said to **commute** if there is a homotopy `left ∙h bottom ~ top ∙h right`. +is said to **commute** if there is a homotopy `left ∙h bottom ~ top ∙h right `. Such a homotopy is called a **coherence** of the square. ## Definition @@ -39,7 +39,7 @@ module _ where coherence-square-homotopies : - (left : f ~ h) (bottom : h ~ i) (top : f ~ g) (right : g ~ i) → UU (l1 ⊔ l2) - coherence-square-homotopies left bottom top right = + (top : f ~ g) (left : f ~ h) (right : g ~ i) (bottom : h ~ i) → UU (l1 ⊔ l2) + coherence-square-homotopies top left right bottom = left ∙h bottom ~ top ∙h right ``` diff --git a/src/foundation/commuting-squares-of-identifications.lagda.md b/src/foundation/commuting-squares-of-identifications.lagda.md index 77c150f49c..0c716a303b 100644 --- a/src/foundation/commuting-squares-of-identifications.lagda.md +++ b/src/foundation/commuting-squares-of-identifications.lagda.md @@ -45,7 +45,7 @@ module _ coherence-square-identifications : (top : x = y) (left : x = z) (right : y = w) (bottom : z = w) → UU l coherence-square-identifications top left right bottom = - (left ∙ bottom) = (top ∙ right) + left ∙ bottom = top ∙ right ``` ## Operations diff --git a/src/foundation/equality-fibers-of-maps.lagda.md b/src/foundation/equality-fibers-of-maps.lagda.md index c4ccf1aa1a..8c075e0f97 100644 --- a/src/foundation/equality-fibers-of-maps.lagda.md +++ b/src/foundation/equality-fibers-of-maps.lagda.md @@ -37,7 +37,7 @@ For any map `f : A → B` any `b : B` and any `x y : fiber f b`, there is an equivalence ```text -(x = y) ≃ fiber (ap f) ((pr2 x) ∙ (inv (pr2 y))) +(x = y) ≃ fiber (ap f) (pr2 x ∙ inv (pr2 y)) ``` ### Proof @@ -48,19 +48,16 @@ module _ where fiber-ap-eq-fiber-fiberwise : - (s t : fiber f b) (p : (pr1 s) = (pr1 t)) → - ((tr (λ (a : A) → (f a) = b) p (pr2 s)) = (pr2 t)) → - (ap f p = ((pr2 s) ∙ (inv (pr2 t)))) - fiber-ap-eq-fiber-fiberwise (pair .x' p) (pair x' refl) refl = - inv ∘ (concat right-unit refl) + (s t : fiber f b) (p : pr1 s = pr1 t) → + tr (λ (a : A) → f a = b) p (pr2 s) = pr2 t → + ap f p = pr2 s ∙ inv (pr2 t) + fiber-ap-eq-fiber-fiberwise (.x' , p) (x' , refl) refl = + inv ∘ concat right-unit refl abstract is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise : (s t : fiber f b) → is-fiberwise-equiv (fiber-ap-eq-fiber-fiberwise s t) - is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise - ( pair x y) - ( pair .x refl) - ( refl) = + is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise (x , y) (.x , refl) refl = is-equiv-comp ( inv) ( concat right-unit refl) @@ -69,15 +66,15 @@ module _ fiber-ap-eq-fiber : (s t : fiber f b) → s = t → - fiber (ap f {x = pr1 s} {y = pr1 t}) ((pr2 s) ∙ (inv (pr2 t))) + fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) pr1 (fiber-ap-eq-fiber s .s refl) = refl pr2 (fiber-ap-eq-fiber s .s refl) = inv (right-inv (pr2 s)) triangle-fiber-ap-eq-fiber : (s t : fiber f b) → - ( fiber-ap-eq-fiber s t) ~ - ( (tot (fiber-ap-eq-fiber-fiberwise s t)) ∘ (pair-eq-Σ {s = s} {t})) - triangle-fiber-ap-eq-fiber (pair x refl) .(pair x refl) refl = refl + fiber-ap-eq-fiber s t ~ + tot (fiber-ap-eq-fiber-fiberwise s t) ∘ pair-eq-Σ {s = s} {t} + triangle-fiber-ap-eq-fiber (x , refl) .(x , refl) refl = refl abstract is-equiv-fiber-ap-eq-fiber : @@ -94,28 +91,41 @@ module _ equiv-fiber-ap-eq-fiber : (s t : fiber f b) → - (s = t) ≃ fiber (ap f {x = pr1 s} {y = pr1 t}) ((pr2 s) ∙ (inv (pr2 t))) + (s = t) ≃ fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) pr1 (equiv-fiber-ap-eq-fiber s t) = fiber-ap-eq-fiber s t pr2 (equiv-fiber-ap-eq-fiber s t) = is-equiv-fiber-ap-eq-fiber s t + map-inv-fiber-ap-eq-fiber : + (s t : fiber f b) → + fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) → + s = t + map-inv-fiber-ap-eq-fiber (x , refl) (.x , p) (refl , u) = + eq-pair-eq-pr2 (ap inv u ∙ inv-inv p) + + ap-pr1-map-inv-fiber-ap-eq-fiber : + (s t : fiber f b) → + (v : fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t))) → + ap pr1 (map-inv-fiber-ap-eq-fiber s t v) = pr1 v + ap-pr1-map-inv-fiber-ap-eq-fiber (x , refl) (.x , p) (refl , u) = + ap-pr1-eq-pair-eq-pr2 (ap inv u ∙ inv-inv p) + module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (x y : A) where eq-fiber-fiber-ap : - (q : f x = f y) → (pair x q) = (pair y refl) → fiber (ap f {x} {y}) q + (q : f x = f y) → (x , q) = (y , refl) → fiber (ap f {x} {y}) q eq-fiber-fiber-ap q = - ( tr (fiber (ap f)) right-unit) ∘ - ( fiber-ap-eq-fiber f (pair x q) (pair y refl)) + tr (fiber (ap f)) right-unit ∘ fiber-ap-eq-fiber f (x , q) (y , refl) abstract is-equiv-eq-fiber-fiber-ap : - (q : (f x) = (f y)) → is-equiv (eq-fiber-fiber-ap q) + (q : (f x) = f y) → is-equiv (eq-fiber-fiber-ap q) is-equiv-eq-fiber-fiber-ap q = is-equiv-comp ( tr (fiber (ap f)) right-unit) - ( fiber-ap-eq-fiber f (pair x q) (pair y refl)) - ( is-equiv-fiber-ap-eq-fiber f (pair x q) (pair y refl)) + ( fiber-ap-eq-fiber f (x , q) (y , refl)) + ( is-equiv-fiber-ap-eq-fiber f (x , q) (y , refl)) ( is-equiv-tr (fiber (ap f)) right-unit) ``` diff --git a/src/foundation/fibered-maps.lagda.md b/src/foundation/fibered-maps.lagda.md index 63a17a6c56..89c8df666d 100644 --- a/src/foundation/fibered-maps.lagda.md +++ b/src/foundation/fibered-maps.lagda.md @@ -51,10 +51,10 @@ Consider a diagram of the form i ``` -A fibered map from `f` to `g` over `i` is a map `h : A → B` such that the square -`(i ∘ f) ~ (g ∘ h)` commutes. +A **fibered map** from `f` to `g` over `i` is a map `h : A → B` such that the +square `i ∘ f ~ g ∘ h` [commutes](foundation-core.commuting-squares-of-maps.md). -## Definition +## Definitions ```agda module _ @@ -250,17 +250,17 @@ module _ is-section-map-over-fiberwise-map-over-eq-htpy : (α : fiberwise-map-over f g i) (x : X) → - (fiberwise-map-over-map-over (map-over-fiberwise-map-over α) x) ~ (α x) + fiberwise-map-over-map-over (map-over-fiberwise-map-over α) x ~ α x is-section-map-over-fiberwise-map-over-eq-htpy α .(f a) (pair a refl) = eq-pair-Σ refl (inv-inv (pr2 (α (f a) (pair a refl)))) is-section-map-over-fiberwise-map-over : - (fiberwise-map-over-map-over ∘ map-over-fiberwise-map-over) ~ id + fiberwise-map-over-map-over ∘ map-over-fiberwise-map-over ~ id is-section-map-over-fiberwise-map-over α = eq-htpy (eq-htpy ∘ is-section-map-over-fiberwise-map-over-eq-htpy α) is-retraction-map-over-fiberwise-map-over : - (map-over-fiberwise-map-over ∘ fiberwise-map-over-map-over) ~ id + map-over-fiberwise-map-over ∘ fiberwise-map-over-map-over ~ id is-retraction-map-over-fiberwise-map-over (pair h H) = eq-pair-Σ refl (eq-htpy (inv-inv ∘ H)) @@ -466,7 +466,7 @@ module _ ( universal-property-empty-is-empty A is-empty-A B) ( ex-falso ∘ is-empty-A) ( dependent-universal-property-empty-is-empty A is-empty-A - ( λ z → (i ∘ f) z = (g ∘ (ex-falso ∘ is-empty-A)) z))) + ( eq-value (i ∘ f) (g ∘ ex-falso ∘ is-empty-A)))) compute-fibered-map-is-empty : (X → Y) ≃ (fibered-map f g) compute-fibered-map-is-empty = inv-equiv inv-compute-fibered-map-is-empty @@ -506,8 +506,7 @@ module _ ( λ j → is-contr-Π ( λ x → - is-prop-is-contr - is-contr-Y (((λ _ → center is-contr-Y) ∘ f) x) ((g ∘ j) x)))) ∘e + is-prop-is-contr is-contr-Y (center is-contr-Y) (g (j x))))) ∘e ( left-unit-law-Σ-is-contr ( is-contr-function-type is-contr-Y) ( λ _ → center is-contr-Y)) diff --git a/src/foundation/fibers-of-maps.lagda.md b/src/foundation/fibers-of-maps.lagda.md index 94b6f353dc..2cfb875685 100644 --- a/src/foundation/fibers-of-maps.lagda.md +++ b/src/foundation/fibers-of-maps.lagda.md @@ -34,8 +34,7 @@ module _ where square-fiber : - ( f ∘ (pr1 {B = λ x → Id (f x) b})) ~ - ( (const unit B b) ∘ (const (fiber f b) unit star)) + f ∘ pr1 ~ const unit B b ∘ const (fiber f b) unit star square-fiber = pr2 cone-fiber : cone f (const unit B b) (fiber f b) @@ -47,7 +46,7 @@ module _ is-pullback-cone-fiber : is-pullback f (const unit B b) cone-fiber is-pullback-cone-fiber = is-equiv-tot-is-fiberwise-equiv - (λ a → is-equiv-map-inv-left-unit-law-prod) + ( λ a → is-equiv-map-inv-left-unit-law-prod) abstract universal-property-pullback-cone-fiber : diff --git a/src/foundation/functoriality-fibers-of-maps.lagda.md b/src/foundation/functoriality-fibers-of-maps.lagda.md index 48b82c08ac..092405f7c1 100644 --- a/src/foundation/functoriality-fibers-of-maps.lagda.md +++ b/src/foundation/functoriality-fibers-of-maps.lagda.md @@ -12,6 +12,7 @@ open import foundation.cones-over-cospans open import foundation.dependent-pair-types open import foundation.universe-levels +open import foundation-core.commuting-squares-of-maps open import foundation-core.equality-dependent-pair-types open import foundation-core.fibers-of-maps open import foundation-core.function-types @@ -24,11 +25,62 @@ open import foundation-core.identity-types ## Idea -Any [commuting square](foundation-core.commuting-squares-of-maps.md) induces a -map between the fibers of the vertical maps. +Any [commuting square](foundation-core.commuting-squares-of-maps.md) + +```text + f' + C -----> B + | | + g'| | g + v v + A -----> X + f +``` + +induces a map between the [fibers](foundation-core.fibers-of-maps.md) of the +vertical maps + +```text + fiber g' x → fiber g (f x). +``` ## Definitions +### Any commuting square induces a family of maps between the fibers of the vertical maps + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} + (top : C → B) (left : C → A) (right : B → X) (bottom : A → X) + where + + map-fiber-square' : + (H : coherence-square-maps' top left right bottom) + (x : A) → fiber left x → fiber right (bottom x) + pr1 (map-fiber-square' H x (y , p)) = top y + pr2 (map-fiber-square' H x (y , p)) = H y ∙ ap bottom p + + coherence-fiber-square' : + (H : coherence-square-maps' top left right bottom) + (x : A) → coherence-square-maps' (map-fiber-square' H x) pr1 pr1 top + coherence-fiber-square' H x p = refl + + map-fiber-square : + (H : coherence-square-maps top left right bottom) + (x : A) → fiber left x → fiber right (bottom x) + map-fiber-square H = map-fiber-square' (inv-htpy H) + + coherence-fiber-square : + (H : coherence-square-maps top left right bottom) + (x : A) → coherence-square-maps (map-fiber-square H x) pr1 pr1 top + coherence-fiber-square H x p = refl + +map-fiber-square-id : + {l1 l2 : Level} {B : UU l1} {X : UU l2} (g : B → X) (x : X) → + map-fiber-square id g g id refl-htpy x ~ id +map-fiber-square-id g .(g b) (b , refl) = refl +``` + ### Any cone induces a family of maps between the fibers of the vertical maps ```agda @@ -38,14 +90,13 @@ module _ where map-fiber-cone : (x : A) → fiber (pr1 c) x → fiber g (f x) - pr1 (map-fiber-cone x t) = pr1 (pr2 c) (pr1 t) - pr2 (map-fiber-cone x t) = (inv (pr2 (pr2 c) (pr1 t))) ∙ (ap f (pr2 t)) - -map-fiber-cone-id : - {l1 l2 : Level} {B : UU l1} {X : UU l2} (g : B → X) (x : X) → - map-fiber-cone id g (g , id , refl-htpy) x ~ id -map-fiber-cone-id g .(g b) (b , refl) = - refl + map-fiber-cone = + map-fiber-square + ( horizontal-map-cone f g c) + ( vertical-map-cone f g c) + ( g) + ( f) + ( coherence-square-cone f g c) ``` ## Properties @@ -114,6 +165,12 @@ module _ ( ap (ap g) (inv right-unit))))) ``` +## See also + +- In [retracts of maps](orthogonal-factorization-systems.retracts-of-maps.md), + we show that if `g` is a retract of `g'`, then the fibers of `g` are retracts + of the fibers of `g'`. + ## Table of files about fibers of maps The following table lists files that are about fibers of maps as a general diff --git a/src/foundation/retractions.lagda.md b/src/foundation/retractions.lagda.md index 0173641b96..a8d2543e94 100644 --- a/src/foundation/retractions.lagda.md +++ b/src/foundation/retractions.lagda.md @@ -66,8 +66,7 @@ is-retraction-retraction-comp-htpy : is-retraction-retraction-comp-htpy f g h H (l , L) (k , K) = eq-htpy-retraction ( ( retraction-right-factor-htpy f g h H - ( retraction-comp-htpy f g h H (l , L) (k , K) - ))) + ( retraction-comp-htpy f g h H (l , L) (k , K)))) ( k , K) ( k ·l L) ( ( inv-htpy-assoc-htpy @@ -82,7 +81,7 @@ is-retraction-retraction-comp-htpy f g h H (l , L) (k , K) = retraction-right-factor-retract-of-retraction-left-factor : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} - (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → + (f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h) → retraction g → (retraction h) retract-of (retraction f) pr1 (retraction-right-factor-retract-of-retraction-left-factor f g h H rg) = retraction-comp-htpy f g h H rg diff --git a/src/foundation/sequential-limits.lagda.md b/src/foundation/sequential-limits.lagda.md index 8a8503dce0..9a340a834a 100644 --- a/src/foundation/sequential-limits.lagda.md +++ b/src/foundation/sequential-limits.lagda.md @@ -158,10 +158,10 @@ module _ sequence-standard-sequential-limit A t) ( λ H → coherence-square-homotopies - ( coherence-standard-sequential-limit A s) - ( λ n → ap (map-tower A n) (H (succ-ℕ n))) ( H) - ( coherence-standard-sequential-limit A t)) + ( coherence-standard-sequential-limit A s) + ( coherence-standard-sequential-limit A t) + ( λ n → ap (map-tower A n) (H (succ-ℕ n)))) refl-Eq-standard-sequential-limit : (s : standard-sequential-limit A) → Eq-standard-sequential-limit s s diff --git a/src/orthogonal-factorization-systems.lagda.md b/src/orthogonal-factorization-systems.lagda.md index 31bc562be6..0a9661d35f 100644 --- a/src/orthogonal-factorization-systems.lagda.md +++ b/src/orthogonal-factorization-systems.lagda.md @@ -37,6 +37,7 @@ open import orthogonal-factorization-systems.pullback-hom public open import orthogonal-factorization-systems.raise-modalities public open import orthogonal-factorization-systems.reflective-modalities public open import orthogonal-factorization-systems.reflective-subuniverses public +open import orthogonal-factorization-systems.retracts-of-maps public open import orthogonal-factorization-systems.separated-types public open import orthogonal-factorization-systems.sigma-closed-modalities public open import orthogonal-factorization-systems.sigma-closed-reflective-modalities public diff --git a/src/orthogonal-factorization-systems/retracts-of-maps.lagda.md b/src/orthogonal-factorization-systems/retracts-of-maps.lagda.md new file mode 100644 index 0000000000..a7b4972564 --- /dev/null +++ b/src/orthogonal-factorization-systems/retracts-of-maps.lagda.md @@ -0,0 +1,524 @@ +# Retracts of maps + +```agda +module orthogonal-factorization-systems.retracts-of-maps where +``` + +
Imports + +```agda +open import foundation.action-on-identifications-functions +open import foundation.commuting-squares-of-homotopies +open import foundation.commuting-squares-of-maps +open import foundation.dependent-pair-types +open import foundation.equality-dependent-pair-types +open import foundation.equality-fibers-of-maps +open import foundation.equivalences +open import foundation.fibers-of-maps +open import foundation.function-types +open import foundation.functoriality-fibers-of-maps +open import foundation.homotopies +open import foundation.identity-types +open import foundation.retractions +open import foundation.sections +open import foundation.transport-along-identifications +open import foundation.universe-levels +open import foundation.whiskering-homotopies +``` + +
+ +## Idea + +A **retract** of `f : X → Y` is a map `g : A → B` that is a retract in the arrow +category of types. Hence, it consists of +[retracts](foundation-core.retractions.md) `A` of `X` and `B` of `Y` that fit +into a commutative diagram + +```text + s r + A ------> X ------> A + | | | + g S f R g + v v v + B ------> Y ------> B + s' r' +``` + +with coherences + +```text + S : s' ∘ g ~ f ∘ s and R : r' ∘ f ~ g ∘ r +``` + +and a higher coherence + +```text + R ·r s + r' ∘ f ∘ s ------ g ∘ r ∘ s + | | + | | + r' ·l S⁻¹ | L | g ·l H + | | + | | + r' ∘ s' ∘ g ---------- g + H' ·r g +``` + +Where `H` and `H'` are the retracting homotopies of `r ∘ s` and `r' ∘ s'` +respectively. + +## Definition + +### The predicate of being a retract of maps + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (r : A retract-of X) (r' : B retract-of Y) + where + + statement-coherence-is-retract-of-map : + coherence-square-maps (section-retract-of r) g f (section-retract-of r') → + coherence-square-maps + ( retraction-retract-of r) f g (retraction-retract-of r') → + UU (l1 ⊔ l2) + statement-coherence-is-retract-of-map S R = + coherence-square-homotopies + ( R ·r section-retract-of r) + ( retraction-retract-of r' ·l inv-htpy S) + ( g ·l is-retract-retract-of r) + ( is-retract-retract-of r' ·r g) + + is-retract-of-map : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) + is-retract-of-map = + Σ ( coherence-square-maps + ( section-retract-of r) g f (section-retract-of r')) + ( λ S → + Σ ( coherence-square-maps + ( retraction-retract-of r) f g (retraction-retract-of r')) + ( statement-coherence-is-retract-of-map S)) + +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (r : A retract-of X) (r' : B retract-of Y) + (k : is-retract-of-map f g r r') + where + + coherence-section-is-retract-of-map : + coherence-square-maps (section-retract-of r) g f (section-retract-of r') + coherence-section-is-retract-of-map = pr1 k + + coherence-retraction-is-retract-of-map : + coherence-square-maps + ( retraction-retract-of r) f g (retraction-retract-of r') + coherence-retraction-is-retract-of-map = pr1 (pr2 k) + + coherence-is-retract-of-map : + statement-coherence-is-retract-of-map f g r r' + coherence-section-is-retract-of-map + coherence-retraction-is-retract-of-map + coherence-is-retract-of-map = pr2 (pr2 k) +``` + +### The type of retracts of maps + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (g : A → B) (f : X → Y) + where + + _retract-of-map_ : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) + _retract-of-map_ = + Σ (A retract-of X) (λ r → Σ (B retract-of Y) (is-retract-of-map f g r)) + +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (k : g retract-of-map f) + where + + retract-of-domain-retract-of-map : A retract-of X + retract-of-domain-retract-of-map = pr1 k + + retract-of-codomain-retract-of-map : B retract-of Y + retract-of-codomain-retract-of-map = pr1 (pr2 k) + + is-retract-of-map-retract-of-map : + is-retract-of-map f g + retract-of-domain-retract-of-map + retract-of-codomain-retract-of-map + is-retract-of-map-retract-of-map = pr2 (pr2 k) + + section-of-domain-retract-of-map : A → X + section-of-domain-retract-of-map = + section-retract-of retract-of-domain-retract-of-map + + retraction-of-domain-retract-of-map : X → A + retraction-of-domain-retract-of-map = + retraction-retract-of retract-of-domain-retract-of-map + + is-retract-of-domain-retract-of-map : + retraction-of-domain-retract-of-map ∘ section-of-domain-retract-of-map ~ id + is-retract-of-domain-retract-of-map = + is-retract-retract-of retract-of-domain-retract-of-map + + section-of-codomain-retract-of-map : B → Y + section-of-codomain-retract-of-map = + section-retract-of retract-of-codomain-retract-of-map + + retraction-of-codomain-retract-of-map : Y → B + retraction-of-codomain-retract-of-map = + retraction-retract-of retract-of-codomain-retract-of-map + + is-retract-of-codomain-retract-of-map : + retraction-of-codomain-retract-of-map ∘ section-of-codomain-retract-of-map ~ + id + is-retract-of-codomain-retract-of-map = + is-retract-retract-of retract-of-codomain-retract-of-map + + coherence-section-retract-of-map : + coherence-square-maps + ( section-of-domain-retract-of-map) + ( g) + ( f) + ( section-of-codomain-retract-of-map) + coherence-section-retract-of-map = + coherence-section-is-retract-of-map f g + ( retract-of-domain-retract-of-map) + ( retract-of-codomain-retract-of-map) + ( is-retract-of-map-retract-of-map) + + coherence-retraction-retract-of-map : + coherence-square-maps + ( retraction-of-domain-retract-of-map) + ( f) + ( g) + ( retraction-of-codomain-retract-of-map) + coherence-retraction-retract-of-map = + coherence-retraction-is-retract-of-map f g + ( retract-of-domain-retract-of-map) + ( retract-of-codomain-retract-of-map) + ( is-retract-of-map-retract-of-map) + + coherence-retract-of-map : + statement-coherence-is-retract-of-map f g + retract-of-domain-retract-of-map + retract-of-codomain-retract-of-map + coherence-section-retract-of-map + coherence-retraction-retract-of-map + coherence-retract-of-map = + coherence-is-retract-of-map f g + ( retract-of-domain-retract-of-map) + ( retract-of-codomain-retract-of-map) + ( is-retract-of-map-retract-of-map) +``` + +## Properties + +### If `g` is a retract of `f`, then the fibers of `g` are retracts of the fibers of `f` + +```text + s'' r'' + g⁻¹x -> f⁻¹(s'x) -> g⁻¹x + | | | + | S' | R' | + v v v + A -- s -> X -- r -> A + | | | + g S f R g + v v v + B ------> Y ------> B + s' r' +``` + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (k : g retract-of-map f) + where + + map-section-fiber-retract-of-map : + (y : B) → fiber g y → fiber f (section-of-codomain-retract-of-map f g k y) + map-section-fiber-retract-of-map = + map-fiber-square + ( section-of-domain-retract-of-map f g k) + ( g) + ( f) + ( section-of-codomain-retract-of-map f g k) + ( coherence-section-retract-of-map f g k) + + map-retraction-fiber-retract-of-map' : + (y : Y) → + fiber f y → fiber g (retraction-of-codomain-retract-of-map f g k y) + map-retraction-fiber-retract-of-map' = + map-fiber-square + ( retraction-of-domain-retract-of-map f g k) + ( f) + ( g) + ( retraction-of-codomain-retract-of-map f g k) + ( coherence-retraction-retract-of-map f g k) + + map-retraction-fiber-retract-of-map : + (y : B) → fiber f (section-of-codomain-retract-of-map f g k y) → fiber g y + pr1 (map-retraction-fiber-retract-of-map y (x , p)) = + retraction-of-domain-retract-of-map f g k x + pr2 (map-retraction-fiber-retract-of-map y (x , p)) = + ( inv (coherence-retraction-retract-of-map f g k x)) ∙ + ( ap (retraction-of-codomain-retract-of-map f g k) p) ∙ + ( is-retract-of-codomain-retract-of-map f g k y) + + abstract + coherence-is-retraction-fiber-retract-of-map : + (y : B) ((x , p) : fiber g y) → + (g ·l is-retract-of-domain-retract-of-map f g k) x = + ( inv + ( coherence-retraction-retract-of-map f g k + ( pr1 (map-section-fiber-retract-of-map y (x , p))))) ∙ + ( ap + ( retraction-of-codomain-retract-of-map f g k) + ( pr2 (map-section-fiber-retract-of-map y (x , p)))) ∙ + ( is-retract-of-codomain-retract-of-map f g k y) ∙ + ( inv p) + coherence-is-retraction-fiber-retract-of-map y (x , refl) = + ( ( ( left-transpose-htpy-concat + ( coherence-retraction-retract-of-map f g k ·r + section-of-domain-retract-of-map f g k) + ( g ·l is-retract-of-domain-retract-of-map f g k) + ( ( retraction-of-codomain-retract-of-map f g k ·l + inv-htpy (coherence-section-retract-of-map f g k)) ∙h + ( is-retract-of-codomain-retract-of-map f g k ·r g)) + ( inv-htpy (coherence-retract-of-map f g k))) ∙h + ( inv-htpy-assoc-htpy + ( inv-htpy + ( coherence-retraction-retract-of-map f g k ·r + section-of-domain-retract-of-map f g k)) + ( retraction-of-codomain-retract-of-map f g k ·l + inv-htpy (coherence-section-retract-of-map f g k)) + ( is-retract-of-codomain-retract-of-map f g k ·r g))) + ( x)) ∙ + ( ap + ( λ p → + ( inv + ( coherence-retraction-retract-of-map f g k + ( section-of-domain-retract-of-map f g k x))) ∙ + ( ap (retraction-of-codomain-retract-of-map f g k) p) ∙ + ( is-retract-of-codomain-retract-of-map f g k y)) + ( inv right-unit)) ∙ + ( inv right-unit) + + is-retraction-fiber-retract-of-map : + (y : B) → + ( map-retraction-fiber-retract-of-map y ∘ + map-section-fiber-retract-of-map y) ~ + id + is-retraction-fiber-retract-of-map y (x , p) = + map-inv-fiber-ap-eq-fiber g + ( map-retraction-fiber-retract-of-map y + ( map-section-fiber-retract-of-map y (x , p))) + ( x , p) + ( ( is-retract-of-domain-retract-of-map f g k x) , + ( coherence-is-retraction-fiber-retract-of-map y (x , p))) + + retract-of-fiber-retract-of-map : + (y : B) → + ( fiber g y) retract-of + ( fiber f (section-of-codomain-retract-of-map f g k y)) + pr1 (retract-of-fiber-retract-of-map y) = + map-section-fiber-retract-of-map y + pr1 (pr2 (retract-of-fiber-retract-of-map y)) = + map-retraction-fiber-retract-of-map y + pr2 (pr2 (retract-of-fiber-retract-of-map y)) = + is-retraction-fiber-retract-of-map y +``` + +### If `g` is a retract of `f`, then the fiber projections of `g` are retracts of the fiber projections of `f` + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (k : g retract-of-map f) (y : B) + where + + is-retract-of-map-fiber-retract-of-map : + is-retract-of-map + ( pr1) + ( pr1) + ( retract-of-fiber-retract-of-map f g k y) + ( retract-of-domain-retract-of-map f g k) + pr1 is-retract-of-map-fiber-retract-of-map = refl-htpy + pr1 (pr2 is-retract-of-map-fiber-retract-of-map) = refl-htpy + pr2 (pr2 is-retract-of-map-fiber-retract-of-map) (x , p) = + inv (ap-pr1-map-inv-fiber-ap-eq-fiber g _ (x , p) _) + + retract-of-map-fiber-retract-of-map : pr1 retract-of-map pr1 + pr1 retract-of-map-fiber-retract-of-map = + retract-of-fiber-retract-of-map f g k y + pr1 (pr2 retract-of-map-fiber-retract-of-map) = + retract-of-domain-retract-of-map f g k + pr2 (pr2 retract-of-map-fiber-retract-of-map) = + is-retract-of-map-fiber-retract-of-map +``` + +### If `f` has a section, then retracts of `f` have a section + +In fact, we only need the following data to show this: + +```text + r + X ------> A + | | + f R g + v v + B ------> Y ------> B. + s' H' r' +``` + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (r : X → A) (r' : B retract-of Y) + (R : coherence-square-maps r f g (retraction-retract-of r')) + (section-f : section f) + where + + map-has-section-is-retract-of-has-section' : B → A + map-has-section-is-retract-of-has-section' = + r ∘ map-section f section-f ∘ section-retract-of r' + + is-section-map-has-section-is-retract-of-has-section' : + g ∘ map-has-section-is-retract-of-has-section' ~ id + is-section-map-has-section-is-retract-of-has-section' = + ( inv-htpy R ·r (map-section f section-f ∘ section-retract-of r')) ∙h + ( ( retraction-retract-of r') ·l + ( is-section-map-section f section-f ·r section-retract-of r')) ∙h + ( is-retract-retract-of r') + + has-section-is-retract-of-has-section' : section g + pr1 has-section-is-retract-of-has-section' = + map-has-section-is-retract-of-has-section' + pr2 has-section-is-retract-of-has-section' = + is-section-map-has-section-is-retract-of-has-section' + +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (k : g retract-of-map f) + where + + has-section-retract-of-has-section : section f → section g + has-section-retract-of-has-section = + has-section-is-retract-of-has-section' f g + ( retraction-of-domain-retract-of-map f g k) + ( retract-of-codomain-retract-of-map f g k) + ( coherence-retraction-retract-of-map f g k) +``` + +### If `f` has a retraction, then retracts of `f` have a retraction + +In fact, we only need the following data to show this: + +```text + s H r + A ------> X ------> A + | | + g S f + v v + B ------> Y. + s' +``` + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (r : A retract-of X) (s' : B → Y) + (S : coherence-square-maps (section-retract-of r) g f s') + (retraction-f : retraction f) + where + + map-has-retraction-is-retract-of-has-retraction' : B → A + map-has-retraction-is-retract-of-has-retraction' = + retraction-retract-of r ∘ map-retraction f retraction-f ∘ s' + + is-retraction-map-has-retraction-is-retract-of-has-retraction' : + map-has-retraction-is-retract-of-has-retraction' ∘ g ~ id + is-retraction-map-has-retraction-is-retract-of-has-retraction' = + ( ( retraction-retract-of r ∘ map-retraction f retraction-f) ·l S) ∙h + ( ( retraction-retract-of r) ·l + ( is-retraction-map-retraction f retraction-f ·r section-retract-of r)) ∙h + ( is-retract-retract-of r) + + has-retraction-is-retract-of-has-retraction' : retraction g + pr1 has-retraction-is-retract-of-has-retraction' = + map-has-retraction-is-retract-of-has-retraction' + pr2 has-retraction-is-retract-of-has-retraction' = + is-retraction-map-has-retraction-is-retract-of-has-retraction' + +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (k : g retract-of-map f) + where + + has-retraction-retract-of-has-retraction : retraction f → retraction g + has-retraction-retract-of-has-retraction = + has-retraction-is-retract-of-has-retraction' f g + ( retract-of-domain-retract-of-map f g k) + ( section-of-codomain-retract-of-map f g k) + ( coherence-section-retract-of-map f g k) +``` + +### Equivalences are closed under retracts of maps + +Note that the higher coherence of a retract of maps is not needed. + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (r : A retract-of X) (r' : B retract-of Y) + (S : coherence-square-maps (section-retract-of r) g f (section-retract-of r')) + (R : + coherence-square-maps + ( retraction-retract-of r) f g (retraction-retract-of r')) + (is-equiv-f : is-equiv f) + where + + is-equiv-is-retract-of-is-equiv' : is-equiv g + pr1 is-equiv-is-retract-of-is-equiv' = + has-section-is-retract-of-has-section' f g + ( retraction-retract-of r) + ( r') + ( R) + ( section-is-equiv is-equiv-f) + pr2 is-equiv-is-retract-of-is-equiv' = + has-retraction-is-retract-of-has-retraction' f g + ( r) + ( section-retract-of r') + ( S) + ( retraction-is-equiv is-equiv-f) + +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : X → Y) (g : A → B) (k : g retract-of-map f) (is-equiv-f : is-equiv f) + where + + is-equiv-retract-of-is-equiv : is-equiv g + pr1 is-equiv-retract-of-is-equiv = + has-section-retract-of-has-section f g k + ( section-is-equiv is-equiv-f) + pr2 is-equiv-retract-of-is-equiv = + has-retraction-retract-of-has-retraction f g k + ( retraction-is-equiv is-equiv-f) +``` + +## References + +1. Section 4.7 of Univalent Foundations Project, _Homotopy Type Theory – + Univalent Foundations of Mathematics_ (2013) + ([website](https://homotopytypetheory.org/book/), + [arXiv:1308.0729](https://arxiv.org/abs/1308.0729)) + +## External links + +- [Retracts in arrow categories](https://ncatlab.org/nlab/show/retract#in_arrow_categories) + at nlab + +A wikidata identifier was not available for this concept. diff --git a/src/synthetic-homotopy-theory/cocones-under-sequential-diagrams.lagda.md b/src/synthetic-homotopy-theory/cocones-under-sequential-diagrams.lagda.md index 1c66c18e04..9d444b5566 100644 --- a/src/synthetic-homotopy-theory/cocones-under-sequential-diagrams.lagda.md +++ b/src/synthetic-homotopy-theory/cocones-under-sequential-diagrams.lagda.md @@ -120,10 +120,10 @@ module _ coherence-htpy-cocone-sequential-diagram c c' K = ( n : ℕ) → coherence-square-homotopies - ( coherence-triangle-cocone-sequential-diagram A c n) - ( K (succ-ℕ n) ·r map-sequential-diagram A n) ( K n) + ( coherence-triangle-cocone-sequential-diagram A c n) ( coherence-triangle-cocone-sequential-diagram A c' n) + ( K (succ-ℕ n) ·r map-sequential-diagram A n) htpy-cocone-sequential-diagram : ( c c' : cocone-sequential-diagram A X) → UU (l1 ⊔ l2) diff --git a/src/synthetic-homotopy-theory/morphisms-sequential-diagrams.lagda.md b/src/synthetic-homotopy-theory/morphisms-sequential-diagrams.lagda.md index 7adbaf5f53..36b52d62a1 100644 --- a/src/synthetic-homotopy-theory/morphisms-sequential-diagrams.lagda.md +++ b/src/synthetic-homotopy-theory/morphisms-sequential-diagrams.lagda.md @@ -177,10 +177,10 @@ module _ coherence-htpy-sequential-diagram H = ( n : ℕ) → coherence-square-homotopies - ( naturality-map-hom-sequential-diagram B f n) - ( H (succ-ℕ n) ·r map-sequential-diagram A n) ( map-sequential-diagram B n ·l H n) + ( naturality-map-hom-sequential-diagram B f n) ( naturality-map-hom-sequential-diagram B g n) + ( H (succ-ℕ n) ·r map-sequential-diagram A n) htpy-hom-sequential-diagram : UU (l1 ⊔ l2) htpy-hom-sequential-diagram =