diff --git a/src/synthetic-homotopy-theory/acyclic-types.lagda.md b/src/synthetic-homotopy-theory/acyclic-types.lagda.md index c3270a309e..1b0039e72d 100644 --- a/src/synthetic-homotopy-theory/acyclic-types.lagda.md +++ b/src/synthetic-homotopy-theory/acyclic-types.lagda.md @@ -10,6 +10,7 @@ module synthetic-homotopy-theory.acyclic-types where open import foundation.contractible-types open import foundation.equivalences open import foundation.propositions +open import foundation.retractions open import foundation.universe-levels open import synthetic-homotopy-theory.functoriality-suspensions @@ -54,6 +55,18 @@ is-acyclic-equiv' : is-acyclic-equiv' e = is-acyclic-equiv (inv-equiv e) ``` +### Acyclic types are closed under retracts + +```agda +module _ + {l1 l2 : Level} {A : UU l1} {B : UU l2} + where + + is-acyclic-retract-of : A retract-of B → is-acyclic B → is-acyclic A + is-acyclic-retract-of R ac = + is-contr-retract-of (suspension B) (retract-of-suspension-retract-of R) ac +``` + ## See also ### Table of files related to cyclic types, groups, and rings