diff --git a/src/category-theory/groupoids.lagda.md b/src/category-theory/groupoids.lagda.md index de26e339b3..7028c7da72 100644 --- a/src/category-theory/groupoids.lagda.md +++ b/src/category-theory/groupoids.lagda.md @@ -165,12 +165,12 @@ module _ Σ ( Σ (y = x) (λ q → q ∙ p = refl)) ( λ (q , l) → p ∙ q = refl)))) ( is-contr-iterated-Σ 2 - ( is-torsorial-path x , + ( is-torsorial-Id x , ( x , refl) , ( is-contr-equiv ( Σ (x = x) (λ q → q = refl)) ( equiv-tot (λ q → equiv-concat (inv right-unit) refl)) - ( is-torsorial-path' refl)) , + ( is-torsorial-Id' refl)) , ( refl , refl) , ( is-proof-irrelevant-is-prop ( is-1-type-type-1-Type X x x refl refl) diff --git a/src/category-theory/isomorphisms-in-categories.lagda.md b/src/category-theory/isomorphisms-in-categories.lagda.md index b80829fa85..5efbcdb841 100644 --- a/src/category-theory/isomorphisms-in-categories.lagda.md +++ b/src/category-theory/isomorphisms-in-categories.lagda.md @@ -743,7 +743,7 @@ module _ is-contr-equiv' ( Σ (obj-Category C) (X =_)) ( equiv-tot (extensionality-obj-Category C X)) - ( is-torsorial-path X) + ( is-torsorial-Id X) is-torsorial-iso-Category' : is-torsorial (λ Y → iso-Category C Y X) @@ -751,7 +751,7 @@ module _ is-contr-equiv' ( Σ (obj-Category C) (_= X)) ( equiv-tot (λ Y → extensionality-obj-Category C Y X)) - ( is-torsorial-path' X) + ( is-torsorial-Id' X) ``` ### Functoriality of `eq-iso` diff --git a/src/category-theory/isomorphisms-in-large-categories.lagda.md b/src/category-theory/isomorphisms-in-large-categories.lagda.md index cfa72bca82..e6f13cb68a 100644 --- a/src/category-theory/isomorphisms-in-large-categories.lagda.md +++ b/src/category-theory/isomorphisms-in-large-categories.lagda.md @@ -199,7 +199,7 @@ module _ is-contr-equiv' ( Σ (obj-Large-Category C l1) (X =_)) ( equiv-tot (extensionality-obj-Large-Category C X)) - ( is-torsorial-path X) + ( is-torsorial-Id X) is-torsorial-iso-Large-Category' : is-torsorial (λ Y → iso-Large-Category C Y X) @@ -207,7 +207,7 @@ module _ is-contr-equiv' ( Σ (obj-Large-Category C l1) (_= X)) ( equiv-tot (λ Y → extensionality-obj-Large-Category C Y X)) - ( is-torsorial-path' X) + ( is-torsorial-Id' X) ``` ## Properties diff --git a/src/category-theory/slice-precategories.lagda.md b/src/category-theory/slice-precategories.lagda.md index 2e0eb5f494..101b4b7712 100644 --- a/src/category-theory/slice-precategories.lagda.md +++ b/src/category-theory/slice-precategories.lagda.md @@ -212,7 +212,7 @@ module _ ( Σ (hom-Precategory C A X) (λ g → f = g)) ( equiv-tot ( λ g → equiv-concat' f (left-unit-law-comp-hom-Precategory C g))) - ( is-torsorial-path f) + ( is-torsorial-Id f) ``` ### Products in slice precategories are pullbacks in the original category diff --git a/src/elementary-number-theory/universal-property-integers.lagda.md b/src/elementary-number-theory/universal-property-integers.lagda.md index 3602311b47..a8689cf3e8 100644 --- a/src/elementary-number-theory/universal-property-integers.lagda.md +++ b/src/elementary-number-theory/universal-property-integers.lagda.md @@ -161,7 +161,7 @@ abstract ( tot (λ α → right-transpose-eq-concat refl α (pr1 (pr2 s)))) ( is-equiv-tot-is-fiberwise-equiv ( λ α → is-equiv-right-transpose-eq-concat refl α (pr1 (pr2 s)))) - ( is-torsorial-path' (pr1 (pr2 s)))) + ( is-torsorial-Id' (pr1 (pr2 s)))) ( pair (pr1 (pr2 s)) (inv (right-inv (pr1 (pr2 s))))) ( is-contr-is-equiv' ( Σ ( ( k : ℤ) → Id (pr1 s (succ-ℤ k)) (pr1 (pS k) (pr1 s k))) diff --git a/src/elementary-number-theory/universal-property-natural-numbers.lagda.md b/src/elementary-number-theory/universal-property-natural-numbers.lagda.md index 9044063f8b..5edeebe5cc 100644 --- a/src/elementary-number-theory/universal-property-natural-numbers.lagda.md +++ b/src/elementary-number-theory/universal-property-natural-numbers.lagda.md @@ -69,7 +69,7 @@ module _ ( is-torsorial-htpy (pr1 h)) ( pair (pr1 h) refl-htpy) ( is-torsorial-Eq-structure - ( is-torsorial-path (pr1 (pr2 h))) + ( is-torsorial-Id (pr1 (pr2 h))) ( pair (pr1 (pr2 h)) refl) ( is-torsorial-htpy (λ n → (pr2 (pr2 h) n ∙ refl)))) diff --git a/src/foundation-core/contractible-types.lagda.md b/src/foundation-core/contractible-types.lagda.md index 3d2821c664..afb4ad31b8 100644 --- a/src/foundation-core/contractible-types.lagda.md +++ b/src/foundation-core/contractible-types.lagda.md @@ -82,16 +82,16 @@ module _ where abstract - is-torsorial-path : (a : A) → is-contr (Σ A (λ x → a = x)) - pr1 (pr1 (is-torsorial-path a)) = a - pr2 (pr1 (is-torsorial-path a)) = refl - pr2 (is-torsorial-path a) (pair .a refl) = refl + is-torsorial-Id : (a : A) → is-contr (Σ A (λ x → a = x)) + pr1 (pr1 (is-torsorial-Id a)) = a + pr2 (pr1 (is-torsorial-Id a)) = refl + pr2 (is-torsorial-Id a) (pair .a refl) = refl abstract - is-torsorial-path' : (a : A) → is-contr (Σ A (λ x → x = a)) - pr1 (pr1 (is-torsorial-path' a)) = a - pr2 (pr1 (is-torsorial-path' a)) = refl - pr2 (is-torsorial-path' a) (pair .a refl) = refl + is-torsorial-Id' : (a : A) → is-contr (Σ A (λ x → x = a)) + pr1 (pr1 (is-torsorial-Id' a)) = a + pr2 (pr1 (is-torsorial-Id' a)) = refl + pr2 (is-torsorial-Id' a) (pair .a refl) = refl ``` ## Properties diff --git a/src/foundation/embeddings.lagda.md b/src/foundation/embeddings.lagda.md index 8a4e18fbe5..49b66be7e3 100644 --- a/src/foundation/embeddings.lagda.md +++ b/src/foundation/embeddings.lagda.md @@ -279,7 +279,7 @@ module _ is-section-inv-map-Σ-emb-base (b , c) = ap ( λ s → (pr1 s , inv-tr C (pr2 s) c)) - ( eq-is-contr (is-torsorial-path' b)) + ( eq-is-contr (is-torsorial-Id' b)) is-retraction-inv-map-Σ-emb-base : is-retraction (map-Σ-map-base (map-emb f) C) inv-map-Σ-emb-base diff --git a/src/foundation/equality-coproduct-types.lagda.md b/src/foundation/equality-coproduct-types.lagda.md index 6252418e66..ea0ad0ca29 100644 --- a/src/foundation/equality-coproduct-types.lagda.md +++ b/src/foundation/equality-coproduct-types.lagda.md @@ -230,7 +230,7 @@ module _ ( is-contr-equiv ( Σ A (Id x)) ( equiv-tot (compute-eq-coprod-inl-inl x)) - ( is-torsorial-path x)) + ( is-torsorial-Id x)) ( λ y → ap inl) emb-inl : A ↪ (A + B) @@ -244,7 +244,7 @@ module _ ( is-contr-equiv ( Σ B (Id x)) ( equiv-tot (compute-eq-coprod-inr-inr x)) - ( is-torsorial-path x)) + ( is-torsorial-Id x)) ( λ y → ap inr) emb-inr : B ↪ (A + B) diff --git a/src/foundation/families-of-maps.lagda.md b/src/foundation/families-of-maps.lagda.md index 94ab9ec72e..79070bc5ac 100644 --- a/src/foundation/families-of-maps.lagda.md +++ b/src/foundation/families-of-maps.lagda.md @@ -56,7 +56,7 @@ module _ ≃ (((x , _) : Σ A B) → Σ (Σ A (x =_)) λ (x' , _) → C x') by equiv-Π-equiv-family (λ (x , _) → inv-left-unit-law-Σ-is-contr - (is-torsorial-path x) + (is-torsorial-Id x) (x , refl)) ≃ (((x , _) : Σ A B) → Σ (Σ A C) λ (x' , _) → x = x') by equiv-Π-equiv-family (λ (x , _) → diff --git a/src/foundation/functional-correspondences.lagda.md b/src/foundation/functional-correspondences.lagda.md index dcc17b0b4b..7bf1fe2d0c 100644 --- a/src/foundation/functional-correspondences.lagda.md +++ b/src/foundation/functional-correspondences.lagda.md @@ -155,7 +155,7 @@ module _ ((x : A) → B x) → functional-correspondence l2 A B pr1 (functional-correspondence-function f) x y = f x = y pr2 (functional-correspondence-function f) x = - is-torsorial-path (f x) + is-torsorial-Id (f x) function-functional-correspondence : {l3 : Level} → functional-correspondence l3 A B → ((x : A) → B x) diff --git a/src/foundation/fundamental-theorem-of-identity-types.lagda.md b/src/foundation/fundamental-theorem-of-identity-types.lagda.md index 57fa70fa94..9614810977 100644 --- a/src/foundation/fundamental-theorem-of-identity-types.lagda.md +++ b/src/foundation/fundamental-theorem-of-identity-types.lagda.md @@ -61,7 +61,7 @@ module _ is-torsorial B → (f : (x : A) → a = x → B x) → is-fiberwise-equiv f fundamental-theorem-id is-contr-AB f = is-fiberwise-equiv-is-equiv-tot - ( is-equiv-is-contr (tot f) (is-torsorial-path a) is-contr-AB) + ( is-equiv-is-contr (tot f) (is-torsorial-Id a) is-contr-AB) abstract fundamental-theorem-id' : @@ -71,7 +71,7 @@ module _ ( Σ A (Id a)) ( tot f) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f) - ( is-torsorial-path a) + ( is-torsorial-Id a) ``` ## Corollaries @@ -95,7 +95,7 @@ module _ ( Σ A (Id a)) ( tot (ind-Id a (λ x p → B x) b)) ( is-equiv-tot-is-fiberwise-equiv H) - ( is-torsorial-path a) + ( is-torsorial-Id a) ``` ### Retracts of the identity type are equivalent to the identity type @@ -120,8 +120,8 @@ module _ ( ( inv-htpy (preserves-comp-tot i (pr1 ∘ R))) ∙h ( tot-htpy (pr2 ∘ R)) ∙h ( tot-id B))) - ( is-torsorial-path a)) - ( is-torsorial-path a)) + ( is-torsorial-Id a)) + ( is-torsorial-Id a)) fundamental-theorem-id-retract : (R : (x : A) → (B x) retract-of (a = x)) → diff --git a/src/foundation/homotopy-induction.lagda.md b/src/foundation/homotopy-induction.lagda.md index 4c35f92ee6..da645df1f2 100644 --- a/src/foundation/homotopy-induction.lagda.md +++ b/src/foundation/homotopy-induction.lagda.md @@ -90,7 +90,7 @@ module _ is-contr-equiv' ( Σ ((x : A) → B x) (Id f)) ( equiv-tot (λ g → equiv-funext)) - ( is-torsorial-path f) + ( is-torsorial-Id f) abstract is-torsorial-htpy' : is-torsorial (λ g → g ~ f) @@ -98,7 +98,7 @@ module _ is-contr-equiv' ( Σ ((x : A) → B x) (λ g → g = f)) ( equiv-tot (λ g → equiv-funext)) - ( is-torsorial-path' f) + ( is-torsorial-Id' f) ``` ### Homotopy induction is equivalent to function extensionality diff --git a/src/foundation/images.lagda.md b/src/foundation/images.lagda.md index ac7b172c3c..f678e73231 100644 --- a/src/foundation/images.lagda.md +++ b/src/foundation/images.lagda.md @@ -94,7 +94,7 @@ module _ (x : im f) → is-torsorial (Eq-im x) is-torsorial-Eq-im x = is-torsorial-Eq-subtype - ( is-torsorial-path (pr1 x)) + ( is-torsorial-Id (pr1 x)) ( λ x → is-prop-type-trunc-Prop) ( pr1 x) ( refl) diff --git a/src/foundation/logical-equivalences.lagda.md b/src/foundation/logical-equivalences.lagda.md index 4df5fd6e56..b6cbf82ad8 100644 --- a/src/foundation/logical-equivalences.lagda.md +++ b/src/foundation/logical-equivalences.lagda.md @@ -165,7 +165,7 @@ compute-fiber-iff-equiv : fiber (iff-equiv) (f , g) ≃ Σ (is-equiv f) (λ f' → map-inv-is-equiv f' ~ g) compute-fiber-iff-equiv {A = A} {B} (f , g) = ( equiv-tot (λ _ → equiv-funext)) ∘e - ( left-unit-law-Σ-is-contr (is-torsorial-path' f) (f , refl)) ∘e + ( left-unit-law-Σ-is-contr (is-torsorial-Id' f) (f , refl)) ∘e ( inv-associative-Σ (A → B) (_= f) _) ∘e ( equiv-tot (λ _ → equiv-left-swap-Σ)) ∘e ( associative-Σ (A → B) _ _) ∘e diff --git a/src/foundation/multivariable-homotopies.lagda.md b/src/foundation/multivariable-homotopies.lagda.md index 48783bc3f8..49f9ff4882 100644 --- a/src/foundation/multivariable-homotopies.lagda.md +++ b/src/foundation/multivariable-homotopies.lagda.md @@ -194,7 +194,7 @@ abstract is-torsorial-multivariable-htpy : {l : Level} (n : ℕ) {{A : telescope l n}} (f : iterated-Π A) → is-torsorial (multivariable-htpy {{A}} f) - is-torsorial-multivariable-htpy .0 {{base-telescope A}} = is-torsorial-path + is-torsorial-multivariable-htpy .0 {{base-telescope A}} = is-torsorial-Id is-torsorial-multivariable-htpy ._ {{cons-telescope A}} f = is-torsorial-Eq-Π (λ x → is-torsorial-multivariable-htpy _ {{A x}} (f x)) @@ -206,7 +206,7 @@ abstract is-contr-equiv' ( Σ (iterated-implicit-Π A) (Id {A = iterated-implicit-Π A} f)) ( equiv-tot (λ _ → equiv-iterated-funext-implicit _ {{A}})) - ( is-torsorial-path {A = iterated-implicit-Π A} f) + ( is-torsorial-Id {A = iterated-implicit-Π A} f) abstract is-torsorial-multivariable-implicit-htpy : diff --git a/src/foundation/pairs-of-distinct-elements.lagda.md b/src/foundation/pairs-of-distinct-elements.lagda.md index 92ad06dd75..8b152f6408 100644 --- a/src/foundation/pairs-of-distinct-elements.lagda.md +++ b/src/foundation/pairs-of-distinct-elements.lagda.md @@ -84,10 +84,10 @@ module _ is-torsorial (Eq-pair-of-distinct-elements p) is-torsorial-Eq-pair-of-distinct-elements p = is-torsorial-Eq-structure - ( is-torsorial-path (first-pair-of-distinct-elements p)) + ( is-torsorial-Id (first-pair-of-distinct-elements p)) ( pair (first-pair-of-distinct-elements p) refl) ( is-torsorial-Eq-subtype - ( is-torsorial-path (second-pair-of-distinct-elements p)) + ( is-torsorial-Id (second-pair-of-distinct-elements p)) ( λ x → is-prop-neg) ( second-pair-of-distinct-elements p) ( refl) diff --git a/src/foundation/partitions.lagda.md b/src/foundation/partitions.lagda.md index 220e28ce32..9f37022516 100644 --- a/src/foundation/partitions.lagda.md +++ b/src/foundation/partitions.lagda.md @@ -641,7 +641,7 @@ module _ ( subtype-inhabited-subtype Q x)) ∘e ( equiv-inv-equiv))) ∘e ( left-unit-law-Σ-is-contr - ( is-torsorial-path (index-Set-Indexed-Σ-Decomposition D a)) + ( is-torsorial-Id (index-Set-Indexed-Σ-Decomposition D a)) ( pair ( index-Set-Indexed-Σ-Decomposition D a) ( refl)))) ∘e diff --git a/src/foundation/pullbacks.lagda.md b/src/foundation/pullbacks.lagda.md index 64af30d769..2f4d48bdf0 100644 --- a/src/foundation/pullbacks.lagda.md +++ b/src/foundation/pullbacks.lagda.md @@ -1145,11 +1145,11 @@ module _ ( c) ( cone-ap' c1)) ( is-equiv-is-contr _ - ( is-torsorial-path (horizontal-map-cone f g c c1)) - ( is-torsorial-path (f (vertical-map-cone f g c c1)))) + ( is-torsorial-Id (horizontal-map-cone f g c c1)) + ( is-torsorial-Id (f (vertical-map-cone f g c c1)))) ( is-equiv-is-contr _ - ( is-torsorial-path c1) - ( is-torsorial-path (vertical-map-cone f g c c1)))) + ( is-torsorial-Id c1) + ( is-torsorial-Id (vertical-map-cone f g c c1)))) ( c2)) ``` diff --git a/src/foundation/russells-paradox.lagda.md b/src/foundation/russells-paradox.lagda.md index a3552d5d08..d4ac4625c8 100644 --- a/src/foundation/russells-paradox.lagda.md +++ b/src/foundation/russells-paradox.lagda.md @@ -129,7 +129,7 @@ paradox-Russell {l} H = β = ( equiv-precomp α empty) ∘e ( ( left-unit-law-Σ-is-contr { B = λ t → (pr1 t) ∉-𝕍 (pr1 t)} - ( is-torsorial-path' R') + ( is-torsorial-Id' R') ( pair R' refl)) ∘e ( ( inv-associative-Σ (𝕍 l) (_= R') (λ t → (pr1 t) ∉-𝕍 (pr1 t))) ∘e ( ( equiv-tot diff --git a/src/foundation/sections.lagda.md b/src/foundation/sections.lagda.md index 7854512e21..86de6b12bb 100644 --- a/src/foundation/sections.lagda.md +++ b/src/foundation/sections.lagda.md @@ -139,7 +139,7 @@ module _ ( is-contr-equiv ( Π-total-fam (λ x y → y = x)) ( inv-distributive-Π-Σ) - ( is-contr-Π is-torsorial-path')) + ( is-contr-Π is-torsorial-Id')) ( id , refl-htpy)) ∘e ( equiv-right-swap-Σ) ∘e ( equiv-Σ-equiv-base ( λ s → pr1 s ~ id) ( distributive-Π-Σ)) diff --git a/src/foundation/sequential-limits.lagda.md b/src/foundation/sequential-limits.lagda.md index 3910a4a89b..c01524227e 100644 --- a/src/foundation/sequential-limits.lagda.md +++ b/src/foundation/sequential-limits.lagda.md @@ -193,7 +193,7 @@ module _ is-torsorial-Eq-structure ( is-torsorial-htpy (pr1 s)) ( pr1 s , refl-htpy) - ( is-torsorial-Eq-Π (λ n → is-torsorial-path (pr2 s n ∙ refl))) + ( is-torsorial-Eq-Π (λ n → is-torsorial-Id (pr2 s n ∙ refl))) is-equiv-Eq-eq-standard-sequential-limit : (s t : standard-sequential-limit A) → diff --git a/src/foundation/singleton-subtypes.lagda.md b/src/foundation/singleton-subtypes.lagda.md index c8d010b9ae..ed53f6dc71 100644 --- a/src/foundation/singleton-subtypes.lagda.md +++ b/src/foundation/singleton-subtypes.lagda.md @@ -105,7 +105,7 @@ module _ standard-singleton-subtype : singleton-subtype l (type-Set X) pr1 standard-singleton-subtype = subtype-standard-singleton-subtype - pr2 standard-singleton-subtype = is-torsorial-path x + pr2 standard-singleton-subtype = is-torsorial-Id x inhabited-subtype-standard-singleton-subtype : inhabited-subtype l (type-Set X) @@ -248,8 +248,8 @@ module _ ( λ y → ( inv-equiv (equiv-unit-trunc-Prop (Id-Prop Y (f x) y))) ∘e ( equiv-trunc-Prop - ( left-unit-law-Σ-is-contr (is-torsorial-path x) (x , refl))))) - ( is-torsorial-path (f x)) + ( left-unit-law-Σ-is-contr (is-torsorial-Id x) (x , refl))))) + ( is-torsorial-Id (f x)) compute-im-singleton-subtype : has-same-elements-subtype @@ -261,7 +261,7 @@ module _ ( im-subtype f (subtype-standard-singleton-subtype X x)) ( refl) ( unit-trunc-Prop ((x , refl) , refl)) - ( is-torsorial-path (f x)) + ( is-torsorial-Id (f x)) ( is-singleton-im-singleton-subtype) ``` diff --git a/src/foundation/symmetric-identity-types.lagda.md b/src/foundation/symmetric-identity-types.lagda.md index 0f1282b7e5..4390404734 100644 --- a/src/foundation/symmetric-identity-types.lagda.md +++ b/src/foundation/symmetric-identity-types.lagda.md @@ -67,7 +67,7 @@ module _ (p : symmetric-Id a) → is-torsorial (Eq-symmetric-Id p) is-torsorial-Eq-symmetric-Id (x , H) = is-torsorial-Eq-structure - ( is-torsorial-path x) + ( is-torsorial-Id x) ( x , refl) ( is-torsorial-htpy H) diff --git a/src/foundation/type-duality.lagda.md b/src/foundation/type-duality.lagda.md index 9010140341..bf363dbedf 100644 --- a/src/foundation/type-duality.lagda.md +++ b/src/foundation/type-duality.lagda.md @@ -119,7 +119,7 @@ is-emb-map-type-duality {l} {l1} {A} H (X , f) = ( Σ Y (λ y → type-is-small (H (g y) a)))) ∘e ( equiv-univalence))) ∘e ( equiv-funext))) - ( is-torsorial-path (X , f))) + ( is-torsorial-Id (X , f))) ( λ Y → ap (map-type-duality H)) emb-type-duality : diff --git a/src/foundation/univalence.lagda.md b/src/foundation/univalence.lagda.md index 1df7bab84c..1e7f3190b7 100644 --- a/src/foundation/univalence.lagda.md +++ b/src/foundation/univalence.lagda.md @@ -112,7 +112,7 @@ module _ is-contr-equiv' ( Σ (UU l) (λ X → X = A)) ( equiv-tot (λ X → equiv-univalence)) - ( is-torsorial-path' A) + ( is-torsorial-Id' A) ``` ### Univalence for type families diff --git a/src/foundation/universal-property-identity-types.lagda.md b/src/foundation/universal-property-identity-types.lagda.md index af544782f6..74679cffd1 100644 --- a/src/foundation/universal-property-identity-types.lagda.md +++ b/src/foundation/universal-property-identity-types.lagda.md @@ -129,7 +129,7 @@ module _ ( equiv-ev-refl x) ∘e ( equiv-inclusion-is-full-subtype ( Π-Prop A ∘ (is-equiv-Prop ∘_)) - ( fundamental-theorem-id (is-torsorial-path a))) ∘e + ( fundamental-theorem-id (is-torsorial-Id a))) ∘e ( distributive-Π-Σ)))) ( emb-tot ( λ x → @@ -145,7 +145,7 @@ module _ ( λ _ → is-injective-emb ( emb-fiber-Id-preunivalent-Id a) - ( eq-is-contr (is-torsorial-path a)))) + ( eq-is-contr (is-torsorial-Id a)))) ( λ _ → ap Id) module _ diff --git a/src/foundation/universal-property-truncation.lagda.md b/src/foundation/universal-property-truncation.lagda.md index 2df1545015..80dec71320 100644 --- a/src/foundation/universal-property-truncation.lagda.md +++ b/src/foundation/universal-property-truncation.lagda.md @@ -68,7 +68,7 @@ module _ ( K x' x) ( Id-Truncated-Type C (g x') z)))) ∘e ( equiv-ev-pair))) - ( is-torsorial-path (g x))) + ( is-torsorial-Id (g x))) is-truncation-is-truncation-ap : is-truncation B f diff --git a/src/foundation/weak-function-extensionality.lagda.md b/src/foundation/weak-function-extensionality.lagda.md index cfd66c65ae..c445141e12 100644 --- a/src/foundation/weak-function-extensionality.lagda.md +++ b/src/foundation/weak-function-extensionality.lagda.md @@ -101,7 +101,7 @@ abstract ( λ t → eq-pair-Σ refl refl)) ( weak-funext A ( λ x → Σ (B x) (λ b → f x = b)) - ( λ x → is-torsorial-path (f x)))) + ( λ x → is-torsorial-Id (f x)))) ( λ g → htpy-eq {g = g}) ``` diff --git a/src/graph-theory/equivalences-directed-graphs.lagda.md b/src/graph-theory/equivalences-directed-graphs.lagda.md index 726b7fb471..ec10cf5c03 100644 --- a/src/graph-theory/equivalences-directed-graphs.lagda.md +++ b/src/graph-theory/equivalences-directed-graphs.lagda.md @@ -335,7 +335,7 @@ module _ is-contr-equiv' ( Σ (Directed-Graph l1 l2) (λ H → G = H)) ( equiv-tot extensionality-Directed-Graph) - ( is-torsorial-path G) + ( is-torsorial-Id G) ``` ### The inverse of an equivalence of directed trees diff --git a/src/graph-theory/fibers-directed-graphs.lagda.md b/src/graph-theory/fibers-directed-graphs.lagda.md index cf20c1a1bf..7f0d16753a 100644 --- a/src/graph-theory/fibers-directed-graphs.lagda.md +++ b/src/graph-theory/fibers-directed-graphs.lagda.md @@ -200,7 +200,7 @@ module _ direct-predecessor-Directed-Graph G ( node-inclusion-fiber-Directed-Graph G x y) compute-direct-predecessor-fiber-Directed-Graph y = - ( right-unit-law-Σ-is-contr (λ (u , e) → is-torsorial-path' _)) ∘e + ( right-unit-law-Σ-is-contr (λ (u , e) → is-torsorial-Id' _)) ∘e ( interchange-Σ-Σ _) map-compute-direct-predecessor-fiber-Directed-Graph : diff --git a/src/graph-theory/walks-directed-graphs.lagda.md b/src/graph-theory/walks-directed-graphs.lagda.md index cd6f407532..822b9d4c23 100644 --- a/src/graph-theory/walks-directed-graphs.lagda.md +++ b/src/graph-theory/walks-directed-graphs.lagda.md @@ -407,7 +407,7 @@ module _ is-contr-equiv' ( Σ (vertex-Directed-Graph G) (λ y → y = x)) ( equiv-tot (λ y → compute-raise l2 (y = x))) - ( is-torsorial-path' x) + ( is-torsorial-Id' x) ``` ### `cons-walk e w ≠ refl-walk` diff --git a/src/graph-theory/walks-undirected-graphs.lagda.md b/src/graph-theory/walks-undirected-graphs.lagda.md index 0377bd1cc9..52490662e6 100644 --- a/src/graph-theory/walks-undirected-graphs.lagda.md +++ b/src/graph-theory/walks-undirected-graphs.lagda.md @@ -169,7 +169,7 @@ module _ is-contr ( vertex-on-walk-Undirected-Graph G (refl-walk-Undirected-Graph {x = x})) is-contr-vertex-on-walk-refl-walk-Undirected-Graph = - is-torsorial-path x + is-torsorial-Id x ``` ### The type of vertices on a walk is equivalent to `Fin (n + 1)` where `n` is the length of the walk @@ -192,7 +192,7 @@ module _ ( equiv-coprod ( compute-vertex-on-walk-Undirected-Graph w) ( equiv-is-contr - ( is-torsorial-path (other-element-unordered-pair p y)) + ( is-torsorial-Id (other-element-unordered-pair p y)) ( is-contr-unit))) ∘e ( left-distributive-Σ-coprod ( vertex-Undirected-Graph G) @@ -231,7 +231,7 @@ module _ ( equiv-coprod ( compute-edge-on-walk-Undirected-Graph w) ( equiv-is-contr - ( is-torsorial-path (pair p e)) + ( is-torsorial-Id (pair p e)) ( is-contr-unit))) ∘e ( left-distributive-Σ-coprod ( total-edge-Undirected-Graph G) diff --git a/src/group-theory/automorphism-groups.lagda.md b/src/group-theory/automorphism-groups.lagda.md index 66a609eded..aa5a4f79ff 100644 --- a/src/group-theory/automorphism-groups.lagda.md +++ b/src/group-theory/automorphism-groups.lagda.md @@ -120,7 +120,7 @@ module _ is-torsorial (Eq-classifying-type-Automorphism-∞-Group X) is-torsorial-Eq-classifying-type-Automorphism-∞-Group X = is-torsorial-Eq-subtype - ( is-torsorial-path (pr1 X)) + ( is-torsorial-Id (pr1 X)) ( λ a → is-prop-type-trunc-Prop) ( pr1 X) ( refl) diff --git a/src/group-theory/isomorphisms-abelian-groups.lagda.md b/src/group-theory/isomorphisms-abelian-groups.lagda.md index 7d636cd570..9d7b07d36e 100644 --- a/src/group-theory/isomorphisms-abelian-groups.lagda.md +++ b/src/group-theory/isomorphisms-abelian-groups.lagda.md @@ -196,7 +196,7 @@ abstract is-contr-equiv' ( Σ (Ab l) (Id A)) ( equiv-tot (equiv-iso-eq-Ab' A)) - ( is-torsorial-path A) + ( is-torsorial-Id A) is-equiv-iso-eq-Ab : {l : Level} (A B : Ab l) → is-equiv (iso-eq-Ab A B) diff --git a/src/group-theory/isomorphisms-groups.lagda.md b/src/group-theory/isomorphisms-groups.lagda.md index a176295cd3..0ab46ae767 100644 --- a/src/group-theory/isomorphisms-groups.lagda.md +++ b/src/group-theory/isomorphisms-groups.lagda.md @@ -242,7 +242,7 @@ module _ is-contr-equiv' ( Σ (Group l) (Id G)) ( equiv-tot extensionality-Group') - ( is-torsorial-path G) + ( is-torsorial-Id G) ``` ### Group isomorphisms are stable by composition diff --git a/src/group-theory/orbits-monoid-actions.lagda.md b/src/group-theory/orbits-monoid-actions.lagda.md index 3238837f89..a6766ac596 100644 --- a/src/group-theory/orbits-monoid-actions.lagda.md +++ b/src/group-theory/orbits-monoid-actions.lagda.md @@ -81,7 +81,7 @@ module _ is-torsorial (htpy-hom-orbit-action-Monoid f) is-torsorial-htpy-hom-orbit-action-Monoid {x} {y} f = is-torsorial-Eq-subtype - ( is-torsorial-path (element-hom-orbit-action-Monoid f)) + ( is-torsorial-Id (element-hom-orbit-action-Monoid f)) ( λ u → is-set-type-action-Monoid M X (mul-action-Monoid M X u x) y) ( element-hom-orbit-action-Monoid f) diff --git a/src/lists/lists.lagda.md b/src/lists/lists.lagda.md index 82634d6451..70c2f61bc6 100644 --- a/src/lists/lists.lagda.md +++ b/src/lists/lists.lagda.md @@ -220,7 +220,7 @@ is-torsorial-Eq-list {A = A} l = is-contr-equiv' ( Σ (list A) (Id l)) ( equiv-tot (equiv-Eq-list l)) - ( is-torsorial-path l) + ( is-torsorial-Id l) is-trunc-Eq-list : (k : 𝕋) {l : Level} {A : UU l} → is-trunc (succ-𝕋 (succ-𝕋 k)) A → diff --git a/src/orthogonal-factorization-systems/closed-modalities.lagda.md b/src/orthogonal-factorization-systems/closed-modalities.lagda.md index 7c79d77436..bdbd345410 100644 --- a/src/orthogonal-factorization-systems/closed-modalities.lagda.md +++ b/src/orthogonal-factorization-systems/closed-modalities.lagda.md @@ -90,7 +90,7 @@ module _ ( f' a) ( center (is-modal-B q))))) ∘e ( equiv-up-join B))) - ( is-torsorial-path' f)) + ( is-torsorial-Id' f)) reflective-subuniverse-closed-modality : reflective-subuniverse (l ⊔ lQ) (l ⊔ lQ) diff --git a/src/ring-theory/isomorphisms-rings.lagda.md b/src/ring-theory/isomorphisms-rings.lagda.md index b8575bd7c4..3b76b3ef97 100644 --- a/src/ring-theory/isomorphisms-rings.lagda.md +++ b/src/ring-theory/isomorphisms-rings.lagda.md @@ -491,7 +491,7 @@ module _ ( (mul-Ring R , associative-mul-Ring R) , λ {x} {y} → refl) ( is-torsorial-Eq-subtype ( is-torsorial-Eq-subtype - ( is-torsorial-path (one-Ring R)) + ( is-torsorial-Id (one-Ring R)) ( λ x → is-prop-prod ( is-prop-Π (λ y → is-set-type-Ring R (mul-Ring R x y) y)) diff --git a/src/structured-types/pointed-equivalences.lagda.md b/src/structured-types/pointed-equivalences.lagda.md index 0c24aaae98..80c212d416 100644 --- a/src/structured-types/pointed-equivalences.lagda.md +++ b/src/structured-types/pointed-equivalences.lagda.md @@ -165,7 +165,7 @@ module _ is-torsorial-Eq-structure ( is-torsorial-equiv (type-Pointed-Type A)) ( pair (type-Pointed-Type A) id-equiv) - ( is-torsorial-path (point-Pointed-Type A)) + ( is-torsorial-Id (point-Pointed-Type A)) extensionality-Pointed-Type : (B : Pointed-Type l1) → Id A B ≃ (A ≃∗ B) extensionality-Pointed-Type = diff --git a/src/structured-types/pointed-types-equipped-with-automorphisms.lagda.md b/src/structured-types/pointed-types-equipped-with-automorphisms.lagda.md index c4e36e99ce..83f24fc993 100644 --- a/src/structured-types/pointed-types-equipped-with-automorphisms.lagda.md +++ b/src/structured-types/pointed-types-equipped-with-automorphisms.lagda.md @@ -159,7 +159,7 @@ is-torsorial-htpy-hom-Pointed-Type-With-Aut X Y h1 = ( is-torsorial-htpy (map-hom-Pointed-Type-With-Aut X Y h1)) ( pair (map-hom-Pointed-Type-With-Aut X Y h1) refl-htpy) ( is-torsorial-Eq-structure - ( is-torsorial-path + ( is-torsorial-Id ( preserves-point-map-hom-Pointed-Type-With-Aut X Y h1)) ( pair (preserves-point-map-hom-Pointed-Type-With-Aut X Y h1) refl) ( is-contr-equiv' diff --git a/src/structured-types/pointed-universal-property-contractible-types.lagda.md b/src/structured-types/pointed-universal-property-contractible-types.lagda.md index 3c595d66c6..93bb61ec11 100644 --- a/src/structured-types/pointed-universal-property-contractible-types.lagda.md +++ b/src/structured-types/pointed-universal-property-contractible-types.lagda.md @@ -73,7 +73,7 @@ module _ is-contr-equiv ( Σ X (λ y → y = x)) ( equiv-Σ-equiv-base _ (equiv-universal-property-contr a c X)) - ( is-torsorial-path' x) + ( is-torsorial-Id' x) module _ {l1 : Level} {A : UU l1} @@ -101,7 +101,7 @@ module _ ( equivalence-reasoning (A → X) ≃ Σ (A → X) (λ f → Σ X (λ x → f a = x)) - by inv-right-unit-law-Σ-is-contr (λ f → is-torsorial-path (f a)) + by inv-right-unit-law-Σ-is-contr (λ f → is-torsorial-Id (f a)) ≃ Σ X (λ x → (A , a) →∗ (X , x)) by equiv-left-swap-Σ ≃ X @@ -110,7 +110,7 @@ module _ ap ( pr1) ( inv - ( contraction (is-torsorial-path (f a)) (pair (f a) refl))))) + ( contraction (is-torsorial-Id (f a)) (pair (f a) refl))))) module _ {l1 : Level} (A : Pointed-Type l1) diff --git a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md index 2d2b34123b..b09342fe44 100644 --- a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md +++ b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md @@ -376,7 +376,7 @@ module _ equiv-left-swap-Σ ≃ (C → X) by - equiv-pr1 (λ v → is-torsorial-path' (v ∘ horizontal-map-cocone f g c)) + equiv-pr1 (λ v → is-torsorial-Id' (v ∘ horizontal-map-cocone f g c)) is-acyclic-map-vertical-map-cocone-is-pushout : is-pushout f g c → diff --git a/src/synthetic-homotopy-theory/codiagonals-of-maps.lagda.md b/src/synthetic-homotopy-theory/codiagonals-of-maps.lagda.md index ba96029837..40f331bb0d 100644 --- a/src/synthetic-homotopy-theory/codiagonals-of-maps.lagda.md +++ b/src/synthetic-homotopy-theory/codiagonals-of-maps.lagda.md @@ -104,15 +104,15 @@ module _ ( unit) ( inv-equiv ( terminal-map (fiber id b) , - ( is-equiv-terminal-map-is-contr (is-torsorial-path' b)))) + ( is-equiv-terminal-map-is-contr (is-torsorial-Id' b)))) ( inv-equiv ( terminal-map (fiber id b) , - ( is-equiv-terminal-map-is-contr (is-torsorial-path' b)))) + ( is-equiv-terminal-map-is-contr (is-torsorial-Id' b)))) ( id-equiv) ( terminal-map (fiber f b)) ( terminal-map (fiber f b)) - ( λ _ → eq-is-contr (is-torsorial-path' b)) - ( λ _ → eq-is-contr (is-torsorial-path' b)) + ( λ _ → eq-is-contr (is-torsorial-Id' b)) + ( λ _ → eq-is-contr (is-torsorial-Id' b)) suspension-cocone-fiber : suspension-cocone (fiber f b) (fiber (codiagonal-map f) b) diff --git a/src/synthetic-homotopy-theory/free-loops.lagda.md b/src/synthetic-homotopy-theory/free-loops.lagda.md index 179b0d76fa..9abf11b695 100644 --- a/src/synthetic-homotopy-theory/free-loops.lagda.md +++ b/src/synthetic-homotopy-theory/free-loops.lagda.md @@ -95,14 +95,14 @@ module _ (α : free-loop X) → is-torsorial (Eq-free-loop α) is-torsorial-Eq-free-loop (pair x α) = is-torsorial-Eq-structure - ( is-torsorial-path x) + ( is-torsorial-Id x) ( pair x refl) ( is-contr-is-equiv' ( Σ (Id x x) (λ α' → Id α α')) ( tot (λ α' α → right-unit ∙ α)) ( is-equiv-tot-is-fiberwise-equiv ( λ α' → is-equiv-concat right-unit α')) - ( is-torsorial-path α)) + ( is-torsorial-Id α)) abstract is-equiv-Eq-eq-free-loop : @@ -142,14 +142,14 @@ module _ ( p : free-dependent-loop α P) → is-torsorial (Eq-free-dependent-loop p) is-torsorial-Eq-free-dependent-loop (pair y p) = is-torsorial-Eq-structure - ( is-torsorial-path y) + ( is-torsorial-Id y) ( pair y refl) ( is-contr-is-equiv' ( Σ (Id (tr P (loop-free-loop α) y) y) (λ p' → Id p p')) ( tot (λ p' α → right-unit ∙ α)) ( is-equiv-tot-is-fiberwise-equiv ( λ p' → is-equiv-concat right-unit p')) - ( is-torsorial-path p)) + ( is-torsorial-Id p)) abstract is-equiv-Eq-free-dependent-loop-eq : diff --git a/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md b/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md index 7c4a10756d..4f8238af04 100644 --- a/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md +++ b/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md @@ -153,15 +153,15 @@ module _ is-torsorial Eq-structure-Hatcher-Acyclic-Type is-torsorial-Eq-structure-Hatcher-Acyclic-Type = is-torsorial-Eq-structure - ( is-torsorial-path (pr1 s)) + ( is-torsorial-Id (pr1 s)) ( pr1 s , refl) ( is-torsorial-Eq-structure - ( is-torsorial-path (pr1 (pr2 s))) + ( is-torsorial-Id (pr1 (pr2 s))) ( pr1 (pr2 s) , refl) ( is-torsorial-Eq-structure - ( is-torsorial-path (pr1 (pr2 (pr2 s)) ∙ refl)) + ( is-torsorial-Id (pr1 (pr2 (pr2 s)) ∙ refl)) ( pr1 (pr2 (pr2 s)) , right-unit) - ( is-torsorial-path (pr2 (pr2 (pr2 s)) ∙ refl)))) + ( is-torsorial-Id (pr2 (pr2 (pr2 s)) ∙ refl)))) Eq-eq-structure-Hatcher-Acyclic-Type : (t : structure-Hatcher-Acyclic-Type A) → @@ -216,7 +216,7 @@ module _ ( ( inv (power-nat-mul-Ω 3 2 (Ω A) a)) ∙ ( power-nat-succ-Ω' 5 (Ω A) a)))) ∘e ( ( ( left-unit-law-Σ-is-contr - ( is-torsorial-path' (a ∙ a)) + ( is-torsorial-Id' (a ∙ a)) ( a ∙ a , refl)) ∘e ( inv-associative-Σ ( type-Ω (Ω A)) @@ -239,7 +239,7 @@ module _ ( equiv-concat' ( power-nat-Ω 3 (Ω A) b) ( interchange-concat-Ω² a b a b))))))))) - ( is-torsorial-path refl) + ( is-torsorial-Id refl) ``` ### For a fixed pointed map, the `is-hom-pointed-map-algebra-Hatcher-Acyclic-Type` family is torsorial @@ -309,13 +309,13 @@ module _ is-hom-pointed-map-algebra-Hatcher-Acyclic-Type' (A , σ) (B , τ) f) is-torsorial-is-hom-pointed-map-algebra-Hatcher-Acyclic-Type' = is-torsorial-Eq-structure - ( is-torsorial-path (map-Ω f a1)) ((map-Ω f a1) , refl) + ( is-torsorial-Id (map-Ω f a1)) ((map-Ω f a1) , refl) ( is-torsorial-Eq-structure - ( is-torsorial-path (map-Ω f a2)) ((map-Ω f a2) , refl) + ( is-torsorial-Id (map-Ω f a2)) ((map-Ω f a2) , refl) ( is-torsorial-Eq-structure - ( is-torsorial-path _) + ( is-torsorial-Id _) ( _ , refl) - ( is-torsorial-path _))) + ( is-torsorial-Id _))) abstract is-torsorial-is-hom-pointed-map-algebra-Hatcher-Acyclic-Type : diff --git a/src/synthetic-homotopy-theory/suspension-structures.lagda.md b/src/synthetic-homotopy-theory/suspension-structures.lagda.md index 6a3e59877e..90522d9f5d 100644 --- a/src/synthetic-homotopy-theory/suspension-structures.lagda.md +++ b/src/synthetic-homotopy-theory/suspension-structures.lagda.md @@ -268,7 +268,7 @@ module _ ( Σ (suspension-structure X Z) (λ c' → c = c')) ( inv-equiv ( equiv-tot (extensionality-suspension-structure c))) - ( is-torsorial-path c)) + ( is-torsorial-Id c)) ( P)) ``` diff --git a/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md b/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md index ac4e4cb5b7..77461197bb 100644 --- a/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md +++ b/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md @@ -607,7 +607,7 @@ module _ equiv-left-swap-Σ ≃ (C → type-Truncated-Type X) by - equiv-pr1 (λ v → is-torsorial-path' (v ∘ horizontal-map-cocone f g c)) + equiv-pr1 (λ v → is-torsorial-Id' (v ∘ horizontal-map-cocone f g c)) is-truncated-acyclic-map-vertical-map-cocone-is-pushout : is-pushout f g c → diff --git a/src/synthetic-homotopy-theory/universal-property-suspensions-of-pointed-types.lagda.md b/src/synthetic-homotopy-theory/universal-property-suspensions-of-pointed-types.lagda.md index a638e4ea4b..1ed990b712 100644 --- a/src/synthetic-homotopy-theory/universal-property-suspensions-of-pointed-types.lagda.md +++ b/src/synthetic-homotopy-theory/universal-property-suspensions-of-pointed-types.lagda.md @@ -143,7 +143,7 @@ module _ (suspension-Pointed-Type X →∗ Y) ≃ (X →∗ Ω Y) equiv-transpose-suspension-loop-adjunction = ( left-unit-law-Σ-is-contr - ( is-torsorial-path (point-Pointed-Type Y)) + ( is-torsorial-Id (point-Pointed-Type Y)) ( point-Pointed-Type Y , refl)) ∘e ( inv-associative-Σ ( type-Pointed-Type Y) @@ -159,9 +159,9 @@ module _ Σ ( point-Pointed-Type Y = pr1 z) ( λ x → pr2 z (point-Pointed-Type X) = x))) ∘e ( inv-right-unit-law-Σ-is-contr - ( λ z → is-torsorial-path (pr2 z (point-Pointed-Type X)))) ∘e + ( λ z → is-torsorial-Id (pr2 z (point-Pointed-Type X)))) ∘e ( left-unit-law-Σ-is-contr - ( is-torsorial-path' (point-Pointed-Type Y)) + ( is-torsorial-Id' (point-Pointed-Type Y)) ( point-Pointed-Type Y , refl)) ∘e ( equiv-right-swap-Σ) ∘e ( equiv-Σ-equiv-base diff --git a/src/trees/equivalences-directed-trees.lagda.md b/src/trees/equivalences-directed-trees.lagda.md index 3d53b85582..4b3dbd9ecb 100644 --- a/src/trees/equivalences-directed-trees.lagda.md +++ b/src/trees/equivalences-directed-trees.lagda.md @@ -443,7 +443,7 @@ module _ is-contr-equiv' ( Σ (Directed-Tree l1 l2) (λ S → T = S)) ( equiv-tot extensionality-Directed-Tree) - ( is-torsorial-path T) + ( is-torsorial-Id T) ``` ### A morphism of directed trees is an equivalence if it is an equivalence on the nodes diff --git a/src/trees/equivalences-enriched-directed-trees.lagda.md b/src/trees/equivalences-enriched-directed-trees.lagda.md index 435594dd57..b4ee4e1da9 100644 --- a/src/trees/equivalences-enriched-directed-trees.lagda.md +++ b/src/trees/equivalences-enriched-directed-trees.lagda.md @@ -506,7 +506,7 @@ module _ is-contr-equiv' ( Σ (Enriched-Directed-Tree l3 l4 A B) (λ S → T = S)) ( equiv-tot extensionality-Enriched-Directed-Tree) - ( is-torsorial-path T) + ( is-torsorial-Id T) ``` ### A morphism of enriched directed trees is an equivalence if it is an equivalence on the nodes diff --git a/src/trees/fibers-enriched-directed-trees.lagda.md b/src/trees/fibers-enriched-directed-trees.lagda.md index c4b4fcaa4a..f546f1acf3 100644 --- a/src/trees/fibers-enriched-directed-trees.lagda.md +++ b/src/trees/fibers-enriched-directed-trees.lagda.md @@ -99,7 +99,7 @@ module _ ( interchange-Σ-Σ (λ u e v → v = cons-walk-Directed-Graph e w)) ∘e ( ( inv-right-unit-law-Σ-is-contr ( λ i → - is-torsorial-path' (cons-walk-Directed-Graph (pr2 i) w))) ∘e + is-torsorial-Id' (cons-walk-Directed-Graph (pr2 i) w))) ∘e ( enrichment-Enriched-Directed-Tree A B T y)) fiber-Enriched-Directed-Tree : Enriched-Directed-Tree (l3 ⊔ l4) (l3 ⊔ l4) A B @@ -157,7 +157,7 @@ module _ map-enrichment-fiber-Enriched-Directed-Tree y b eq-map-enrichment-fiber-Enriched-Directed-Tree y b w p = eq-interchange-Σ-Σ-is-contr _ - ( is-torsorial-path' + ( is-torsorial-Id' ( cons-walk-Directed-Graph ( edge-enrichment-Enriched-Directed-Tree A B T ( node-inclusion-fiber-Enriched-Directed-Tree y) diff --git a/src/trees/polynomial-endofunctors.lagda.md b/src/trees/polynomial-endofunctors.lagda.md index 6962ec19ac..398d54325a 100644 --- a/src/trees/polynomial-endofunctors.lagda.md +++ b/src/trees/polynomial-endofunctors.lagda.md @@ -71,7 +71,7 @@ module _ is-torsorial (Eq-type-polynomial-endofunctor x) is-torsorial-Eq-type-polynomial-endofunctor (pair x α) = is-torsorial-Eq-structure - ( is-torsorial-path x) + ( is-torsorial-Id x) ( pair x refl) ( is-torsorial-htpy α) diff --git a/src/trees/rooted-morphisms-directed-trees.lagda.md b/src/trees/rooted-morphisms-directed-trees.lagda.md index fb82443c30..81c9d5fc01 100644 --- a/src/trees/rooted-morphisms-directed-trees.lagda.md +++ b/src/trees/rooted-morphisms-directed-trees.lagda.md @@ -256,5 +256,5 @@ module _ is-contr-equiv' ( Σ (rooted-hom-Directed-Tree S T) (λ g → f = g)) ( equiv-tot extensionality-rooted-hom-Directed-Tree) - ( is-torsorial-path f) + ( is-torsorial-Id f) ``` diff --git a/src/univalent-combinatorics/2-element-subtypes.lagda.md b/src/univalent-combinatorics/2-element-subtypes.lagda.md index efafaa64f8..16f26a1213 100644 --- a/src/univalent-combinatorics/2-element-subtypes.lagda.md +++ b/src/univalent-combinatorics/2-element-subtypes.lagda.md @@ -129,10 +129,10 @@ module _ ( equiv-coprod ( equiv-is-contr ( is-contr-Fin-one-ℕ) - ( is-torsorial-path x)) + ( is-torsorial-Id x)) ( equiv-is-contr ( is-contr-unit) - ( is-torsorial-path y))) + ( is-torsorial-Id y))) has-two-elements-type-standard-2-Element-Subtype : has-two-elements type-standard-2-Element-Subtype diff --git a/src/univalent-combinatorics/cartesian-product-types.lagda.md b/src/univalent-combinatorics/cartesian-product-types.lagda.md index 0ef51f58d3..fa9ee2a64b 100644 --- a/src/univalent-combinatorics/cartesian-product-types.lagda.md +++ b/src/univalent-combinatorics/cartesian-product-types.lagda.md @@ -85,7 +85,7 @@ equiv-left-factor : equiv-left-factor {l1} {l2} {X} {Y} y = ( ( right-unit-law-prod) ∘e ( equiv-tot - ( λ x → equiv-is-contr (is-torsorial-path' y) is-contr-unit))) ∘e + ( λ x → equiv-is-contr (is-torsorial-Id' y) is-contr-unit))) ∘e ( associative-Σ X (λ x → Y) (λ t → Id (pr2 t) y)) count-left-factor : diff --git a/src/univalent-combinatorics/counting-dependent-pair-types.lagda.md b/src/univalent-combinatorics/counting-dependent-pair-types.lagda.md index 99211c837f..8e1578953e 100644 --- a/src/univalent-combinatorics/counting-dependent-pair-types.lagda.md +++ b/src/univalent-combinatorics/counting-dependent-pair-types.lagda.md @@ -149,7 +149,7 @@ count-fiber-map-section-family : count-fiber-map-section-family {l1} {l2} {A} {B} b e f (pair y z) = count-equiv' ( ( ( left-unit-law-Σ-is-contr - ( is-torsorial-path' y) + ( is-torsorial-Id' y) ( pair y refl)) ∘e ( inv-associative-Σ A ( λ x → Id x y) diff --git a/src/univalent-combinatorics/dependent-pair-types.lagda.md b/src/univalent-combinatorics/dependent-pair-types.lagda.md index 54170fb6ef..288b6e4881 100644 --- a/src/univalent-combinatorics/dependent-pair-types.lagda.md +++ b/src/univalent-combinatorics/dependent-pair-types.lagda.md @@ -106,7 +106,7 @@ abstract ( λ (x : A) → Id x (pr1 t)) ( λ s → Id (tr B (pr2 s) (b (pr1 s))) (pr2 t))) ∘e ( inv-left-unit-law-Σ-is-contr - ( is-torsorial-path' (pr1 t)) + ( is-torsorial-Id' (pr1 t)) ( pair (pr1 t) refl)))))) ( count-Σ e ( λ t → diff --git a/src/univalent-combinatorics/fibers-of-maps.lagda.md b/src/univalent-combinatorics/fibers-of-maps.lagda.md index 5e5eff6376..434a444727 100644 --- a/src/univalent-combinatorics/fibers-of-maps.lagda.md +++ b/src/univalent-combinatorics/fibers-of-maps.lagda.md @@ -113,7 +113,7 @@ abstract is-finite-fiber-map-section-family {l1} {l2} {A} {B} b f g (pair y z) = is-finite-equiv' ( ( ( left-unit-law-Σ-is-contr - ( is-torsorial-path' y) + ( is-torsorial-Id' y) ( pair y refl)) ∘e ( inv-associative-Σ A ( λ x → Id x y) diff --git a/src/univalent-combinatorics/finite-types.lagda.md b/src/univalent-combinatorics/finite-types.lagda.md index 8fdc0f7f01..7ae5f6ef72 100644 --- a/src/univalent-combinatorics/finite-types.lagda.md +++ b/src/univalent-combinatorics/finite-types.lagda.md @@ -585,7 +585,7 @@ is-torsorial-equiv-𝔽 {l} X = is-contr-equiv' ( Σ (𝔽 l) (Id X)) ( equiv-tot (extensionality-𝔽 X)) - ( is-torsorial-path X) + ( is-torsorial-Id X) equiv-eq-𝔽 : {l : Level} → (X Y : 𝔽 l) → Id X Y → equiv-𝔽 X Y equiv-eq-𝔽 X Y = map-equiv (extensionality-𝔽 X Y)