diff --git a/src/foundation/action-on-identifications-binary-functions.lagda.md b/src/foundation/action-on-identifications-binary-functions.lagda.md index f0dd34c389..d9d2b1d339 100644 --- a/src/foundation/action-on-identifications-binary-functions.lagda.md +++ b/src/foundation/action-on-identifications-binary-functions.lagda.md @@ -31,7 +31,7 @@ we call this the There are a few different ways we can define `ap-binary`. We could define it by pattern matching on both `p` and `q`, but this leads to restricted computational behaviour. Instead, we define it as the upper concatenation in the Gray -interchange diagram +interchanger diagram ```text ap (r ↦ f x r) q diff --git a/src/foundation/path-algebra.lagda.md b/src/foundation/path-algebra.lagda.md index 00db01351b..f22f14f192 100644 --- a/src/foundation/path-algebra.lagda.md +++ b/src/foundation/path-algebra.lagda.md @@ -174,15 +174,15 @@ right-unit-law-vertical-concat-Id² : vertical-concat-Id² α refl = α right-unit-law-vertical-concat-Id² = right-unit -compute-left-horizontal-concat-Id² : +compute-left-refl-horizontal-concat-Id² : {l : Level} {A : UU l} {x y z : A} {p : x = y} {u v : y = z} (γ : u = v) → horizontal-concat-Id² refl γ = left-whisker-concat p γ -compute-left-horizontal-concat-Id² = left-unit-ap-binary (_∙_) +compute-left-refl-horizontal-concat-Id² = left-unit-ap-binary (_∙_) -compute-right-horizontal-concat-Id² : +compute-right-refl-horizontal-concat-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) {u : y = z} → horizontal-concat-Id² α refl = right-whisker-concat α u -compute-right-horizontal-concat-Id² = right-unit-ap-binary (_∙_) +compute-right-refl-horizontal-concat-Id² = right-unit-ap-binary (_∙_) ``` Horizontal concatenation satisfies an additional "2-dimensional" unit law (on @@ -202,7 +202,9 @@ module _ nat-sq-right-unit-Id² = ( ( horizontal-concat-Id² refl (inv (ap-id α))) ∙ ( nat-htpy htpy-right-unit α)) ∙ - ( horizontal-concat-Id² (inv (compute-right-horizontal-concat-Id² α)) refl) + ( horizontal-concat-Id² + ( inv (compute-right-refl-horizontal-concat-Id² α)) + ( refl)) nat-sq-left-unit-Id² : coherence-square-identifications @@ -212,7 +214,7 @@ module _ ( α) nat-sq-left-unit-Id² = ( ( (inv (ap-id α) ∙ (nat-htpy htpy-left-unit α)) ∙ right-unit) ∙ - ( inv (compute-left-horizontal-concat-Id² α))) ∙ + ( inv (compute-left-refl-horizontal-concat-Id² α))) ∙ ( inv right-unit) ``` @@ -289,20 +291,22 @@ inner-interchange-Id² : (β : p = r) (γ : u = v) → ( horizontal-concat-Id² β γ) = ( vertical-concat-Id² (left-whisker-concat p γ) (right-whisker-concat β v)) -inner-interchange-Id² {u = refl} β refl = compute-right-horizontal-concat-Id² β +inner-interchange-Id² {u = refl} β refl = + compute-right-refl-horizontal-concat-Id² β outer-interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u w : y = z} (α : p = q) (δ : u = w) → ( horizontal-concat-Id² α δ) = ( vertical-concat-Id² (right-whisker-concat α u) (left-whisker-concat q δ)) -outer-interchange-Id² {p = refl} refl δ = compute-left-horizontal-concat-Id² δ +outer-interchange-Id² {p = refl} refl δ = + compute-left-refl-horizontal-concat-Id² δ unit-law-α-interchange-Id² : {l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) (u : y = z) → ( ( interchange-Id² α refl (refl {x = u}) refl) ∙ - ( right-unit ∙ compute-right-horizontal-concat-Id² α)) = - ( ( compute-right-horizontal-concat-Id² (α ∙ refl)) ∙ + ( right-unit ∙ compute-right-refl-horizontal-concat-Id² α)) = + ( ( compute-right-refl-horizontal-concat-Id² (α ∙ refl)) ∙ ( ap (λ s → right-whisker-concat s u) right-unit)) unit-law-α-interchange-Id² refl _ = refl @@ -314,8 +318,8 @@ unit-law-β-interchange-Id² refl _ = refl unit-law-γ-interchange-Id² : {l : Level} {A : UU l} {x y z : A} (p : x = y) {u v : y = z} (γ : u = v) → ( ( interchange-Id² (refl {x = p}) refl γ refl) ∙ - ( right-unit ∙ compute-left-horizontal-concat-Id² γ)) = - ( ( compute-left-horizontal-concat-Id² (γ ∙ refl)) ∙ + ( right-unit ∙ compute-left-refl-horizontal-concat-Id² γ)) = + ( ( compute-left-refl-horizontal-concat-Id² (γ ∙ refl)) ∙ ( ap (left-whisker-concat p) right-unit)) unit-law-γ-interchange-Id² _ refl = refl @@ -387,13 +391,13 @@ left-unit-law-y-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α : p = q} {γ δ : q = r} {τ : γ = δ} → y-concat-Id³ (refl {x = α}) τ = left-whisker-concat α τ -left-unit-law-y-concat-Id³ {τ = τ} = compute-left-horizontal-concat-Id² τ +left-unit-law-y-concat-Id³ {τ = τ} = compute-left-refl-horizontal-concat-Id² τ right-unit-law-y-concat-Id³ : {l : Level} {A : UU l} {x y : A} {p q r : x = y} {α β : p = q} {γ : q = r} {σ : α = β} → y-concat-Id³ σ (refl {x = γ}) = right-whisker-concat σ γ -right-unit-law-y-concat-Id³ {σ = σ} = compute-right-horizontal-concat-Id² σ +right-unit-law-y-concat-Id³ {σ = σ} = compute-right-refl-horizontal-concat-Id² σ left-unit-law-z-concat-Id³ : {l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z} diff --git a/src/foundation/yoneda-identity-types.lagda.md b/src/foundation/yoneda-identity-types.lagda.md index 4ef08b761b..081408e0ba 100644 --- a/src/foundation/yoneda-identity-types.lagda.md +++ b/src/foundation/yoneda-identity-types.lagda.md @@ -709,7 +709,7 @@ module _ ### Action of binary functions on Yoneda identifications We obtain an action of binary functions on Yoneda identifications that computes -on both arguments using one of the two sides in the Gray interchange diagram +on both arguments using one of the two sides in the Gray interchanger diagram ```text ap (r ↦ f x r) q diff --git a/src/synthetic-homotopy-theory/double-loop-spaces.lagda.md b/src/synthetic-homotopy-theory/double-loop-spaces.lagda.md index 52379055f0..03c7e352fa 100644 --- a/src/synthetic-homotopy-theory/double-loop-spaces.lagda.md +++ b/src/synthetic-homotopy-theory/double-loop-spaces.lagda.md @@ -81,7 +81,7 @@ module _ {a : A} {α : type-Ω² a} → horizontal-concat-Ω² refl-Ω² α = α left-unit-law-horizontal-concat-Ω² {α = α} = - compute-left-horizontal-concat-Id² α ∙ ap-id α + compute-left-refl-horizontal-concat-Id² α ∙ ap-id α naturality-right-unit : {x y : A} {p q : x = y} (α : p = q) → @@ -99,7 +99,7 @@ module _ right-unit-law-horizontal-concat-Ω² : {a : A} {α : type-Ω² a} → horizontal-concat-Ω² α refl-Ω² = α right-unit-law-horizontal-concat-Ω² {α = α} = - compute-right-horizontal-concat-Id² α ∙ naturality-right-unit-Ω² α + compute-right-refl-horizontal-concat-Id² α ∙ naturality-right-unit-Ω² α left-unit-law-left-whisker-Ω² : {a : A} (α : type-Ω² a) → left-whisker-concat (refl-Ω (A , a)) α = α diff --git a/src/synthetic-homotopy-theory/triple-loop-spaces.lagda.md b/src/synthetic-homotopy-theory/triple-loop-spaces.lagda.md index 71471914a3..cdb70b73bf 100644 --- a/src/synthetic-homotopy-theory/triple-loop-spaces.lagda.md +++ b/src/synthetic-homotopy-theory/triple-loop-spaces.lagda.md @@ -106,7 +106,7 @@ left-unit-law-z-concat-Ω³ : left-unit-law-z-concat-Ω³ α = ( left-unit-law-z-concat-Id³ α) ∙ ( ( inv right-unit) ∙ - ( ( inv-nat-htpy (λ ω → compute-left-horizontal-concat-Id² ω) α) ∙ + ( ( inv-nat-htpy (λ ω → compute-left-refl-horizontal-concat-Id² ω) α) ∙ ( ( inv right-unit) ∙ ( ( inv-nat-htpy ap-id α) ∙ ( ap-id α))))) @@ -129,7 +129,7 @@ right-unit-law-z-concat-Ω³ α = -} {- ( ( inv right-unit) ∙ - ( ( inv-nat-htpy (λ ω → compute-right-horizontal-concat-Id² ω) α) ∙ + ( ( inv-nat-htpy (λ ω → compute-right-refl-horizontal-concat-Id² ω) α) ∙ ( left-unit ∙ ( ( inv right-unit) ∙ ( ( inv-nat-htpy