From 82b59b9e4aa96a769c566c09ae73e8189e5eb9a9 Mon Sep 17 00:00:00 2001 From: Tom de Jong <43781735+tomdjong@users.noreply.github.com> Date: Thu, 9 Nov 2023 12:13:02 +0000 Subject: [PATCH] Composition and left factor for epis/acyclic maps (#909) --- src/foundation/epimorphisms.lagda.md | 19 +++++++++++++ .../acyclic-maps.lagda.md | 28 +++++++++++++++++++ 2 files changed, 47 insertions(+) diff --git a/src/foundation/epimorphisms.lagda.md b/src/foundation/epimorphisms.lagda.md index 5505581352..d3a14b661e 100644 --- a/src/foundation/epimorphisms.lagda.md +++ b/src/foundation/epimorphisms.lagda.md @@ -182,6 +182,25 @@ If the map `f : A → B` is epi, then its codiagonal is an equivalence. is-epimorphism-is-pushout = is-epimorphism-is-equiv-codiagonal-map ``` +### The class of epimorphisms is closed under composition and has the right cancellation property + +```agda +module _ + {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} + (g : B → C) (f : A → B) + where + + is-epimorphism-comp : + is-epimorphism g → is-epimorphism f → is-epimorphism (g ∘ f) + is-epimorphism-comp eg ef X = + is-emb-comp (precomp f X) (precomp g X) (ef X) (eg X) + + is-epimorphism-left-factor : + is-epimorphism (g ∘ f) → is-epimorphism f → is-epimorphism g + is-epimorphism-left-factor ec ef X = + is-emb-right-factor (precomp f X) (precomp g X) (ef X) (ec X) +``` + ## See also - [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md) diff --git a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md index a9f4aa9d5b..bceb52e31a 100644 --- a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md +++ b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md @@ -209,6 +209,34 @@ module _ ( is-acyclic-map-is-epimorphism f e) ``` +### The class of acyclic maps is closed under composition and has the right cancellation property + +Since the acyclic maps are precisely the epimorphisms this follows from the +corresponding facts about [epimorphisms](foundation.epimorphisms.md). + +```agda +module _ + {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} + (g : B → C) (f : A → B) + where + + is-acyclic-map-comp : + is-acyclic-map g → is-acyclic-map f → is-acyclic-map (g ∘ f) + is-acyclic-map-comp ag af = + is-acyclic-map-is-epimorphism (g ∘ f) + ( is-epimorphism-comp g f + ( is-epimorphism-is-acyclic-map g ag) + ( is-epimorphism-is-acyclic-map f af)) + + is-acyclic-map-left-factor : + is-acyclic-map (g ∘ f) → is-acyclic-map f → is-acyclic-map g + is-acyclic-map-left-factor ac af = + is-acyclic-map-is-epimorphism g + ( is-epimorphism-left-factor g f + ( is-epimorphism-is-acyclic-map (g ∘ f) ac) + ( is-epimorphism-is-acyclic-map f af)) +``` + ## See also - [Dependent epimorphisms](foundation.dependent-epimorphisms.md)