diff --git a/src/synthetic-homotopy-theory/functoriality-sequential-colimits.lagda.md b/src/synthetic-homotopy-theory/functoriality-sequential-colimits.lagda.md index 1bca6b7e9a..8a704baefb 100644 --- a/src/synthetic-homotopy-theory/functoriality-sequential-colimits.lagda.md +++ b/src/synthetic-homotopy-theory/functoriality-sequential-colimits.lagda.md @@ -21,6 +21,7 @@ open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.retractions open import foundation.retracts-of-types +open import foundation.sections open import foundation.universe-levels open import foundation.whiskering-homotopies @@ -37,23 +38,38 @@ open import synthetic-homotopy-theory.universal-property-sequential-colimits ## Idea -Taking the -[sequential colimit](synthetic-homotopy-theory.sequential-colimits.md) of a -[sequential diagram](synthetic-homotopy-theory.sequential-diagrams.md) is a -functorial action `(A, a) ↦ A∞`. +Given two +[sequential diagrams](synthetic-homotopy-theory.sequential-diagrams.md) `(A, a)` +and `(B, b)`, their +[sequential colimits](synthetic-homotopy-theory.universal-property-sequential-colimits.md) +`X` and `Y`, and a +[morphism](synthetic-homotopy-theory.morphisms-sequential-diagrams.md) +`f : (A, a) → (B, b)`, we get an induced map `f∞ : X → Y`, as in the following +diagram: -In other words, a -[morphism of sequential diagrams](synthetic-homotopy-theory.morphisms-sequential-diagrams.md) -`f : (A, a) → (B, b)` induces a map `f∞ : A∞ → B∞` between the -[standard sequential colimits](synthetic-homotopy-theory.sequential-colimits.md) -of the diagrams, and this action preserves the identity morphism and morphism -composition. +```text + a₀ a₁ a₂ + A₀ ---> A₁ ---> A₂ ---> ⋯ ---> X + | | | | + f₀ | | f₁ | f₂ | f∞ + V V V V + B₀ ---> B₁ ---> B₂ ---> ⋯ ---> Y + b₀ b₁ b₂ . +``` + +The identity morphism is taken to the identity function, `id∞ ~ id`, and +composition of morphisms is taken to composition of functions, +`(g ∘ f)∞ ~ g∞ ∘ f∞`. -Furthermore, an -[equivalence of sequential diagrams](synthetic-homotopy-theory.equivalences-sequential-diagrams.md) -`e : (A, a) ≃ (B, b)` induces an equivalence `e∞ : A∞ ≃ B∞`. +A corollary of these facts is that taking the +[standard sequential colimit](synthetic-homotopy-theory.sequential-colimits.md) +is a functorial action `(A, a) ↦ A∞`. -The development in this file is a formalization of Lemma 3.5 in Sequential +Additionally, an +[equivalence of sequentual diagrams](synthetic-homotopy-theory.equivalences-sequential-diagrams) +induces an [equivalence](foundation.equivalences.md) of their colimits. + +The development in this file is a generalization of Lemma 3.5 from Sequential Colimits in Homotopy Type Theory. ## Properties @@ -72,24 +88,24 @@ module _ comp-hom-sequential-diagram A B (constant-sequential-diagram X) c f ``` -### A morphism of sequential diagrams induces a map of standard sequential colimits +### A morphism of sequential diagrams induces a map of sequential colimits The induced map ```text a₀ a₁ a₂ - A₀ ---> A₁ ---> A₂ ---> ⋯ ---> A∞ + A₀ ---> A₁ ---> A₂ ---> ⋯ ---> X | | | | f₀ | | f₁ | f₂ | f∞ V V V V - B₀ ---> B₁ ---> B₂ ---> ⋯ ---> B∞ + B₀ ---> B₁ ---> B₂ ---> ⋯ ---> Y b₀ b₁ b₂ ``` then induces a [cocone](synthetic-homotopy-theory.cocones-under-sequential-diagrams.md) under -`(A, a)` with codomain `B∞`, which is homotopic to the standard cocone under -`(B, b)` precomposed by `f`. +`(A, a)` with codomain `Y`, which is homotopic to the cocone under `(B, b)` +precomposed by `f`. This homotopy of cocones provides [vertical commuting prisms of maps](foundation.commuting-prisms-of-maps.md), @@ -99,21 +115,431 @@ This homotopy of cocones provides ^ | \ / | \ / |fₙ₊₁ V - Aₙ ---------> A∞ + Aₙ ---------> X | | | | V | fₙ | Bₙ₊₁ | f∞ | ^ \ | | / \ | V/ VV - Bₙ ---------> B∞ , + Bₙ ---------> Y , ``` where the [triangles](foundation-core.commuting-triangles-of-maps.md) are -coherences of the cocones of the standard sequential colimits, the back left +coherences of the cocones of the sequential colimits, the back left [square](foundation-core.commuting-triangles-of-maps.md) is coherence of `f`, and the front and back right squares are provided by uniqueness of `f∞`. +```agda +module _ + { l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {B : sequential-diagram l2} + { X : UU l3} {c : cocone-sequential-diagram A X} + ( up-c : universal-property-sequential-colimit c) + { Y : UU l4} (c' : cocone-sequential-diagram B Y) + ( f : hom-sequential-diagram A B) + where + + map-sequential-colimit-hom-sequential-diagram : X → Y + map-sequential-colimit-hom-sequential-diagram = + map-universal-property-sequential-colimit up-c + ( map-cocone-hom-sequential-diagram f c') + + htpy-cocone-map-sequential-colimit-hom-sequential-diagram : + htpy-cocone-sequential-diagram + ( cocone-map-sequential-diagram c + ( map-sequential-colimit-hom-sequential-diagram)) + ( map-cocone-hom-sequential-diagram f c') + htpy-cocone-map-sequential-colimit-hom-sequential-diagram = + htpy-cocone-universal-property-sequential-colimit up-c + ( map-cocone-hom-sequential-diagram f c') + + htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram : + ( n : ℕ) → + coherence-square-maps + ( map-hom-sequential-diagram B f n) + ( map-cocone-sequential-diagram c n) + ( map-cocone-sequential-diagram c' n) + ( map-sequential-colimit-hom-sequential-diagram) + htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram = + htpy-htpy-cocone-sequential-diagram + ( htpy-cocone-map-sequential-colimit-hom-sequential-diagram) + + coherence-htpy-cocone-map-sequential-colimit-hom-sequential-diagram : + ( n : ℕ) → + coherence-square-homotopies + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram n) + ( ( map-sequential-colimit-hom-sequential-diagram) ·l + ( coherence-triangle-cocone-sequential-diagram c n)) + ( coherence-triangle-cocone-sequential-diagram + ( map-cocone-hom-sequential-diagram f c') + ( n)) + ( ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( succ-ℕ n)) ·r + ( map-sequential-diagram A n)) + coherence-htpy-cocone-map-sequential-colimit-hom-sequential-diagram = + coherence-htpy-htpy-cocone-sequential-diagram + htpy-cocone-map-sequential-colimit-hom-sequential-diagram + + prism-htpy-cocone-map-sequential-colimit-hom-sequential-diagram : + ( n : ℕ) → + vertical-coherence-prism-maps + ( map-cocone-sequential-diagram c n) + ( map-cocone-sequential-diagram c (succ-ℕ n)) + ( map-sequential-diagram A n) + ( map-cocone-sequential-diagram c' n) + ( map-cocone-sequential-diagram c' (succ-ℕ n)) + ( map-sequential-diagram B n) + ( map-hom-sequential-diagram B f n) + ( map-hom-sequential-diagram B f (succ-ℕ n)) + ( map-sequential-colimit-hom-sequential-diagram) + ( coherence-triangle-cocone-sequential-diagram c n) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram n)) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( succ-ℕ n))) + ( naturality-map-hom-sequential-diagram B f n) + ( coherence-triangle-cocone-sequential-diagram c' n) + prism-htpy-cocone-map-sequential-colimit-hom-sequential-diagram n = + rotate-vertical-coherence-prism-maps + ( map-cocone-sequential-diagram c n) + ( map-cocone-sequential-diagram c (succ-ℕ n)) + ( map-sequential-diagram A n) + ( map-cocone-sequential-diagram c' n) + ( map-cocone-sequential-diagram c' (succ-ℕ n)) + ( map-sequential-diagram B n) + ( map-hom-sequential-diagram B f n) + ( map-hom-sequential-diagram B f (succ-ℕ n)) + ( map-sequential-colimit-hom-sequential-diagram) + ( coherence-triangle-cocone-sequential-diagram c n) + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram n) + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( succ-ℕ n)) + ( naturality-map-hom-sequential-diagram B f n) + ( coherence-triangle-cocone-sequential-diagram c' n) + ( inv-htpy + ( coherence-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( n))) +``` + +### Homotopies between morphisms of sequential diagrams induce homotopies of maps between sequential colimits + +```agda +module _ + { l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {B : sequential-diagram l2} + { X : UU l3} {c : cocone-sequential-diagram A X} + ( up-c : universal-property-sequential-colimit c) + { Y : UU l4} (c' : cocone-sequential-diagram B Y) + { f g : hom-sequential-diagram A B} (H : htpy-hom-sequential-diagram B f g) + where + + htpy-map-sequential-colimit-htpy-hom-sequential-diagram : + map-sequential-colimit-hom-sequential-diagram up-c c' f ~ + map-sequential-colimit-hom-sequential-diagram up-c c' g + htpy-map-sequential-colimit-htpy-hom-sequential-diagram = + htpy-eq + ( ap + ( map-sequential-colimit-hom-sequential-diagram up-c c') + ( eq-htpy-sequential-diagram _ _ f g H)) +``` + +### The identity morphism induces the identity map + +```agda +module _ + { l1 l2 : Level} {A : sequential-diagram l1} {X : UU l2} + { c : cocone-sequential-diagram A X} + ( up-c : universal-property-sequential-colimit c) + where + + htpy-preserves-id-map-sequential-colimit-hom-sequential-diagram : + htpy-out-of-sequential-colimit c + ( map-sequential-colimit-hom-sequential-diagram up-c c + ( id-hom-sequential-diagram A)) + ( id) + pr1 htpy-preserves-id-map-sequential-colimit-hom-sequential-diagram = + htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c + ( id-hom-sequential-diagram A) + pr2 htpy-preserves-id-map-sequential-colimit-hom-sequential-diagram n = + ( coherence-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c + ( id-hom-sequential-diagram A) + ( n)) ∙h + ( ap-concat-htpy _ + ( ( right-unit-htpy) ∙h + ( inv-htpy + ( left-unit-law-left-whisk-htpy + ( coherence-triangle-cocone-sequential-diagram c n))))) + + preserves-id-map-sequential-colimit-hom-sequential-diagram : + ( map-sequential-colimit-hom-sequential-diagram up-c c + ( id-hom-sequential-diagram A)) ~ + ( id) + preserves-id-map-sequential-colimit-hom-sequential-diagram = + htpy-htpy-out-of-sequential-colimit up-c + ( htpy-preserves-id-map-sequential-colimit-hom-sequential-diagram) +``` + +### Composition of morphisms induces composition of functions + +```agda +module _ + { l1 l2 l3 l4 l5 l6 : Level} + { A : sequential-diagram l1} {B : sequential-diagram l2} + { C : sequential-diagram l3} + { X : UU l4} {c : cocone-sequential-diagram A X} + ( up-c : universal-property-sequential-colimit c) + { Y : UU l5} {c' : cocone-sequential-diagram B Y} + ( up-c' : universal-property-sequential-colimit c') + { Z : UU l6} (c'' : cocone-sequential-diagram C Z) + ( g : hom-sequential-diagram B C) (f : hom-sequential-diagram A B) + where + + htpy-preserves-comp-map-sequential-colimit-hom-sequential-diagram : + htpy-out-of-sequential-colimit c + ( map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f)) + ( ( map-sequential-colimit-hom-sequential-diagram up-c' c'' g) ∘ + ( map-sequential-colimit-hom-sequential-diagram up-c c' f)) + pr1 htpy-preserves-comp-map-sequential-colimit-hom-sequential-diagram n = + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f) + ( n)) ∙h + pasting-vertical-coherence-square-maps + ( map-cocone-sequential-diagram c n) + ( map-hom-sequential-diagram B f n) + ( map-sequential-colimit-hom-sequential-diagram up-c c' f) + ( map-cocone-sequential-diagram c' n) + ( map-hom-sequential-diagram C g n) + ( map-sequential-colimit-hom-sequential-diagram up-c' c'' g) + ( map-cocone-sequential-diagram c'' n) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c' + ( f) + ( n))) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c' + ( c'') + ( g) + ( n))) + pr2 htpy-preserves-comp-map-sequential-colimit-hom-sequential-diagram n = + ( right-whisk-square-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f) + ( n)) + ( ( map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f)) ·l + ( coherence-triangle-cocone-sequential-diagram c n)) + ( _) + ( coherence-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c + ( c'') + ( comp-hom-sequential-diagram A B C g f) + ( n))) ∙h + ( ap-concat-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f) + ( n)) + ( ( assoc-htpy + ( ( coherence-triangle-cocone-sequential-diagram c'' n) ·r + ( ( map-hom-sequential-diagram C g n) ∘ + ( map-hom-sequential-diagram B f n))) + ( map-cocone-sequential-diagram c'' (succ-ℕ n) ·l _) + ( _)) ∙h + ( pasting-vertical-coherence-prism-maps + ( map-cocone-sequential-diagram c n) + ( map-cocone-sequential-diagram c (succ-ℕ n)) + ( map-sequential-diagram A n) + ( map-cocone-sequential-diagram c' n) + ( map-cocone-sequential-diagram c' (succ-ℕ n)) + ( map-sequential-diagram B n) + ( map-hom-sequential-diagram B f n) + ( map-hom-sequential-diagram B f (succ-ℕ n)) + ( map-sequential-colimit-hom-sequential-diagram up-c c' f) + ( map-cocone-sequential-diagram c'' n) + ( map-cocone-sequential-diagram c'' (succ-ℕ n)) + ( map-sequential-diagram C n) + ( map-hom-sequential-diagram C g n) + ( map-hom-sequential-diagram C g (succ-ℕ n)) + ( map-sequential-colimit-hom-sequential-diagram up-c' c'' g) + ( coherence-triangle-cocone-sequential-diagram c n) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-c) + ( c') + ( f) + ( n))) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-c) + ( c') + ( f) + ( succ-ℕ n))) + ( naturality-map-hom-sequential-diagram B f n) + ( coherence-triangle-cocone-sequential-diagram c' n) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-c') + ( c'') + ( g) + ( n))) + ( inv-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-c') + ( c'') + ( g) + ( succ-ℕ n))) + ( naturality-map-hom-sequential-diagram C g n) + ( coherence-triangle-cocone-sequential-diagram c'' n) + ( prism-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c + ( c') + ( f) + ( n)) + ( prism-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-c') + ( c'') + ( g) + ( n))))) ∙h + ( inv-htpy-assoc-htpy + ( htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f) + ( n)) + ( _) + ( ( ( map-sequential-colimit-hom-sequential-diagram up-c' c'' g) ∘ + ( map-sequential-colimit-hom-sequential-diagram up-c c' f)) ·l + ( coherence-triangle-cocone-sequential-diagram c n))) + + preserves-comp-map-sequential-colimit-hom-sequential-diagram : + ( map-sequential-colimit-hom-sequential-diagram up-c c'' + ( comp-hom-sequential-diagram A B C g f)) ~ + ( ( map-sequential-colimit-hom-sequential-diagram up-c' c'' g) ∘ + ( map-sequential-colimit-hom-sequential-diagram up-c c' f)) + preserves-comp-map-sequential-colimit-hom-sequential-diagram = + htpy-htpy-out-of-sequential-colimit up-c + ( htpy-preserves-comp-map-sequential-colimit-hom-sequential-diagram) +``` + +### A retract of sequential diagrams induces a retract of sequential colimits + +Additionally, the underlying map of the retraction is definitionally equal to +the map induced by the retraction of sequential diagrams. + +```agda +module _ + { l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {B : sequential-diagram l2} + { X : UU l3} {c : cocone-sequential-diagram A X} + ( up-c : universal-property-sequential-colimit c) + { Y : UU l4} {c' : cocone-sequential-diagram B Y} + ( up-c' : universal-property-sequential-colimit c') + ( R : A retract-of-sequential-diagram B) + where + + map-inclusion-sequential-colimit-retract-sequential-diagram : X → Y + map-inclusion-sequential-colimit-retract-sequential-diagram = + map-sequential-colimit-hom-sequential-diagram up-c c' + ( inclusion-retract-sequential-diagram A B R) + + map-sequential-colimit-retract-sequential-diagram : Y → X + map-sequential-colimit-retract-sequential-diagram = + map-sequential-colimit-hom-sequential-diagram up-c' c + ( hom-retraction-retract-sequential-diagram A B R) + + abstract + is-retraction-map-sequential-colimit-retract-sequential-diagram : + is-retraction + ( map-inclusion-sequential-colimit-retract-sequential-diagram) + ( map-sequential-colimit-retract-sequential-diagram) + is-retraction-map-sequential-colimit-retract-sequential-diagram = + ( inv-htpy + ( preserves-comp-map-sequential-colimit-hom-sequential-diagram up-c + ( up-c') + ( c) + ( hom-retraction-retract-sequential-diagram A B R) + ( inclusion-retract-sequential-diagram A B R))) ∙h + ( htpy-map-sequential-colimit-htpy-hom-sequential-diagram up-c c + ( is-retraction-hom-retraction-retract-sequential-diagram A B R)) ∙h + ( preserves-id-map-sequential-colimit-hom-sequential-diagram up-c) + + retraction-sequential-colimit-retract-sequential-diagram : + retraction map-inclusion-sequential-colimit-retract-sequential-diagram + pr1 retraction-sequential-colimit-retract-sequential-diagram = + map-sequential-colimit-retract-sequential-diagram + pr2 retraction-sequential-colimit-retract-sequential-diagram = + is-retraction-map-sequential-colimit-retract-sequential-diagram + + retract-sequential-colimit-retract-sequential-diagram : + X retract-of Y + pr1 retract-sequential-colimit-retract-sequential-diagram = + map-inclusion-sequential-colimit-retract-sequential-diagram + pr2 retract-sequential-colimit-retract-sequential-diagram = + retraction-sequential-colimit-retract-sequential-diagram +``` + +### An equivalence of sequential diagrams induces an equivalence of sequential colimits + +Additionally, the underlying map of the inverse equivalence is definitionally +equal to the map induced by the inverse of the equivalence of sequential +diagrams, i.e. `(e∞)⁻¹ = (e⁻¹)∞`. + +```agda +module _ + { l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {B : sequential-diagram l2} + { X : UU l3} {c : cocone-sequential-diagram A X} + ( up-c : universal-property-sequential-colimit c) + { Y : UU l4} {c' : cocone-sequential-diagram B Y} + ( up-c' : universal-property-sequential-colimit c') + ( e : equiv-sequential-diagram A B) + where + + map-equiv-sequential-colimit-equiv-sequential-diagram : X → Y + map-equiv-sequential-colimit-equiv-sequential-diagram = + map-sequential-colimit-hom-sequential-diagram up-c c' + ( hom-equiv-sequential-diagram B e) + + map-inv-equiv-sequential-colimit-equiv-sequential-diagram : Y → X + map-inv-equiv-sequential-colimit-equiv-sequential-diagram = + map-sequential-colimit-hom-sequential-diagram up-c' c + ( hom-inv-equiv-sequential-diagram B e) + + abstract + is-section-map-inv-equiv-sequential-colimit-equiv-sequential-diagram : + is-section + ( map-equiv-sequential-colimit-equiv-sequential-diagram) + ( map-inv-equiv-sequential-colimit-equiv-sequential-diagram) + is-section-map-inv-equiv-sequential-colimit-equiv-sequential-diagram = + ( inv-htpy + ( preserves-comp-map-sequential-colimit-hom-sequential-diagram up-c' + ( up-c) + ( c') + ( hom-equiv-sequential-diagram B e) + ( hom-inv-equiv-sequential-diagram B e))) ∙h + ( htpy-map-sequential-colimit-htpy-hom-sequential-diagram up-c' c' + ( is-section-inv-equiv-sequential-diagram _ e)) ∙h + ( preserves-id-map-sequential-colimit-hom-sequential-diagram up-c') + + is-retraction-map-inv-equiv-sequential-colimit-equiv-sequential-diagram : + is-retraction + ( map-equiv-sequential-colimit-equiv-sequential-diagram) + ( map-inv-equiv-sequential-colimit-equiv-sequential-diagram) + is-retraction-map-inv-equiv-sequential-colimit-equiv-sequential-diagram = + is-retraction-map-sequential-colimit-retract-sequential-diagram up-c up-c' + ( retract-equiv-sequential-diagram e) + + is-equiv-map-equiv-sequential-colimit-equiv-sequential-diagram : + is-equiv map-equiv-sequential-colimit-equiv-sequential-diagram + is-equiv-map-equiv-sequential-colimit-equiv-sequential-diagram = + is-equiv-is-invertible + ( map-inv-equiv-sequential-colimit-equiv-sequential-diagram) + ( is-section-map-inv-equiv-sequential-colimit-equiv-sequential-diagram) + ( is-retraction-map-inv-equiv-sequential-colimit-equiv-sequential-diagram) + + equiv-sequential-colimit-equiv-sequential-diagram : X ≃ Y + pr1 equiv-sequential-colimit-equiv-sequential-diagram = + map-equiv-sequential-colimit-equiv-sequential-diagram + pr2 equiv-sequential-colimit-equiv-sequential-diagram = + is-equiv-map-equiv-sequential-colimit-equiv-sequential-diagram +``` + +### A morphism of sequential diagrams induces a map of standard sequential colimits + ```agda module _ { l1 l2 : Level} {A : sequential-diagram l1} (B : sequential-diagram l2) @@ -123,23 +549,23 @@ module _ map-hom-standard-sequential-colimit : standard-sequential-colimit A → standard-sequential-colimit B map-hom-standard-sequential-colimit = - cogap-standard-sequential-colimit - ( map-cocone-hom-sequential-diagram f - ( cocone-standard-sequential-colimit B)) + map-sequential-colimit-hom-sequential-diagram + ( up-standard-sequential-colimit) + ( cocone-standard-sequential-colimit B) + ( f) htpy-cocone-map-hom-standard-sequential-colimit : - htpy-cocone-sequential-diagram A - ( cocone-map-sequential-diagram A + htpy-cocone-sequential-diagram + ( cocone-map-sequential-diagram ( cocone-standard-sequential-colimit A) ( map-hom-standard-sequential-colimit)) ( map-cocone-hom-sequential-diagram f ( cocone-standard-sequential-colimit B)) htpy-cocone-map-hom-standard-sequential-colimit = - htpy-cocone-universal-property-sequential-colimit A - ( cocone-standard-sequential-colimit A) + htpy-cocone-map-sequential-colimit-hom-sequential-diagram ( up-standard-sequential-colimit) - ( map-cocone-hom-sequential-diagram f - ( cocone-standard-sequential-colimit B)) + ( cocone-standard-sequential-colimit B) + ( f) htpy-htpy-cocone-map-hom-standard-sequential-colimit : ( n : ℕ) → @@ -149,8 +575,10 @@ module _ ( map-cocone-standard-sequential-colimit n) ( map-hom-standard-sequential-colimit) htpy-htpy-cocone-map-hom-standard-sequential-colimit = - htpy-htpy-cocone-sequential-diagram A - ( htpy-cocone-map-hom-standard-sequential-colimit) + htpy-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-standard-sequential-colimit) + ( cocone-standard-sequential-colimit B) + ( f) coherence-htpy-cocone-map-hom-standard-sequential-colimit : ( n : ℕ) → @@ -158,15 +586,17 @@ module _ ( htpy-htpy-cocone-map-hom-standard-sequential-colimit n) ( ( map-hom-standard-sequential-colimit) ·l ( coherence-triangle-cocone-standard-sequential-colimit n)) - ( coherence-triangle-cocone-sequential-diagram A + ( coherence-triangle-cocone-sequential-diagram ( map-cocone-hom-sequential-diagram f ( cocone-standard-sequential-colimit B)) ( n)) ( ( htpy-htpy-cocone-map-hom-standard-sequential-colimit (succ-ℕ n)) ·r ( map-sequential-diagram A n)) coherence-htpy-cocone-map-hom-standard-sequential-colimit = - coherence-htpy-htpy-cocone-sequential-diagram A - ( htpy-cocone-map-hom-standard-sequential-colimit) + coherence-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-standard-sequential-colimit) + ( cocone-standard-sequential-colimit B) + ( f) prism-htpy-cocone-map-hom-standard-sequential-colimit : ( n : ℕ) → @@ -186,23 +616,11 @@ module _ ( htpy-htpy-cocone-map-hom-standard-sequential-colimit (succ-ℕ n))) ( naturality-map-hom-sequential-diagram B f n) ( coherence-triangle-cocone-standard-sequential-colimit n) - prism-htpy-cocone-map-hom-standard-sequential-colimit n = - rotate-vertical-coherence-prism-maps - ( map-cocone-standard-sequential-colimit n) - ( map-cocone-standard-sequential-colimit (succ-ℕ n)) - ( map-sequential-diagram A n) - ( map-cocone-standard-sequential-colimit n) - ( map-cocone-standard-sequential-colimit (succ-ℕ n)) - ( map-sequential-diagram B n) - ( map-hom-sequential-diagram B f n) - ( map-hom-sequential-diagram B f (succ-ℕ n)) - ( map-hom-standard-sequential-colimit) - ( coherence-triangle-cocone-standard-sequential-colimit n) - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit n) - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit (succ-ℕ n)) - ( naturality-map-hom-sequential-diagram B f n) - ( coherence-triangle-cocone-standard-sequential-colimit n) - ( inv-htpy (coherence-htpy-cocone-map-hom-standard-sequential-colimit n)) + prism-htpy-cocone-map-hom-standard-sequential-colimit = + prism-htpy-cocone-map-sequential-colimit-hom-sequential-diagram + ( up-standard-sequential-colimit) + ( cocone-standard-sequential-colimit B) + ( f) ``` ### Homotopies between morphisms of sequential diagrams induce homotopies of maps of standard sequential colimits @@ -217,10 +635,10 @@ module _ map-hom-standard-sequential-colimit B f ~ map-hom-standard-sequential-colimit B g htpy-map-hom-standard-sequential-colimit-htpy-hom-sequential-diagram = - htpy-eq - ( ap - ( map-hom-standard-sequential-colimit B) - ( eq-htpy-sequential-diagram A B f g H)) + htpy-map-sequential-colimit-htpy-hom-sequential-diagram + ( up-standard-sequential-colimit) + ( cocone-standard-sequential-colimit B) + ( H) ``` ### The identity morphism induces the identity map @@ -232,30 +650,13 @@ module _ { l1 : Level} {A : sequential-diagram l1} where - htpy-preserves-id-map-hom-standard-sequential-colimit : - htpy-out-of-standard-sequential-colimit A - ( map-hom-standard-sequential-colimit A - ( id-hom-sequential-diagram A)) - ( id) - pr1 htpy-preserves-id-map-hom-standard-sequential-colimit = - htpy-htpy-cocone-map-hom-standard-sequential-colimit A - ( id-hom-sequential-diagram A) - pr2 htpy-preserves-id-map-hom-standard-sequential-colimit n = - ( coherence-htpy-cocone-map-hom-standard-sequential-colimit A - ( id-hom-sequential-diagram A) n) ∙h - ( ap-concat-htpy _ - ( ( right-unit-htpy) ∙h - ( inv-htpy - ( left-unit-law-left-whisk-htpy - ( coherence-triangle-cocone-standard-sequential-colimit n))))) - preserves-id-map-hom-standard-sequential-colimit : - map-hom-standard-sequential-colimit A - ( id-hom-sequential-diagram A) ~ - id + ( map-hom-standard-sequential-colimit A + ( id-hom-sequential-diagram A)) ~ + ( id) preserves-id-map-hom-standard-sequential-colimit = - htpy-htpy-out-of-standard-sequential-colimit A - ( htpy-preserves-id-map-hom-standard-sequential-colimit) + preserves-id-map-sequential-colimit-hom-sequential-diagram + ( up-standard-sequential-colimit) ``` ### Forming standard sequential colimits preserves composition of morphisms of sequential diagrams @@ -269,112 +670,18 @@ module _ ( g : hom-sequential-diagram B C) (f : hom-sequential-diagram A B) where - htpy-preserves-comp-map-hom-standard-sequential-colimit : - htpy-out-of-standard-sequential-colimit A - ( map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f)) - ( ( map-hom-standard-sequential-colimit C g) ∘ - ( map-hom-standard-sequential-colimit B f)) - pr1 htpy-preserves-comp-map-hom-standard-sequential-colimit n = - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f) n) ∙h - ( pasting-vertical-coherence-square-maps - ( map-cocone-standard-sequential-colimit n) - ( map-hom-sequential-diagram B f n) - ( map-hom-standard-sequential-colimit B f) - ( map-cocone-standard-sequential-colimit n) - ( map-hom-sequential-diagram C g n) - ( map-hom-standard-sequential-colimit C g) - ( map-cocone-standard-sequential-colimit n) - ( inv-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit B f n)) - ( inv-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C g n))) - pr2 htpy-preserves-comp-map-hom-standard-sequential-colimit n = - ( inv-htpy-assoc-htpy - ( ( map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f)) ·l - ( coherence-triangle-cocone-standard-sequential-colimit n)) - ( ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f) - ( succ-ℕ n)) ·r - ( map-sequential-diagram A n)) - ( _)) ∙h - ( ap-concat-htpy' _ - ( coherence-htpy-cocone-map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f) - ( n)) ∙h - ( assoc-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f) - ( n)) - ( coherence-triangle-cocone-sequential-diagram A - ( map-cocone-hom-sequential-diagram - ( comp-hom-sequential-diagram A B C g f) - ( cocone-standard-sequential-colimit C)) - ( n)) - ( _)) ∙h - ( ap-concat-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f) - ( n)) - ( ( assoc-htpy - ( ( coherence-triangle-cocone-standard-sequential-colimit n) ·r - ( ( map-hom-sequential-diagram C g n) ∘ - ( map-hom-sequential-diagram B f n))) - ( map-cocone-standard-sequential-colimit (succ-ℕ n) ·l _) - ( _)) ∙h - ( pasting-vertical-coherence-prism-maps - ( map-cocone-standard-sequential-colimit n) - ( map-cocone-standard-sequential-colimit (succ-ℕ n)) - ( map-sequential-diagram A n) - ( map-cocone-standard-sequential-colimit n) - ( map-cocone-standard-sequential-colimit (succ-ℕ n)) - ( map-sequential-diagram B n) - ( map-hom-sequential-diagram B f n) - ( map-hom-sequential-diagram B f (succ-ℕ n)) - ( map-hom-standard-sequential-colimit B f) - ( map-cocone-standard-sequential-colimit n) - ( map-cocone-standard-sequential-colimit (succ-ℕ n)) - ( map-sequential-diagram C n) - ( map-hom-sequential-diagram C g n) - ( map-hom-sequential-diagram C g (succ-ℕ n)) - ( map-hom-standard-sequential-colimit C g) - ( coherence-triangle-cocone-standard-sequential-colimit n) - ( inv-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit B f n)) - ( inv-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit B f - ( succ-ℕ n))) - ( naturality-map-hom-sequential-diagram B f n) - ( coherence-triangle-cocone-standard-sequential-colimit n) - ( inv-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C g n)) - ( inv-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C g - ( succ-ℕ n))) - ( naturality-map-hom-sequential-diagram C g n) - ( coherence-triangle-cocone-standard-sequential-colimit n) - ( prism-htpy-cocone-map-hom-standard-sequential-colimit B f n) - ( prism-htpy-cocone-map-hom-standard-sequential-colimit C g - ( n))))) ∙h - ( inv-htpy-assoc-htpy - ( htpy-htpy-cocone-map-hom-standard-sequential-colimit C - ( comp-hom-sequential-diagram A B C g f) - ( n)) - ( _) - ( ( ( map-hom-standard-sequential-colimit C g) ∘ - ( map-hom-standard-sequential-colimit B f)) ·l - ( coherence-triangle-cocone-standard-sequential-colimit n)))) - preserves-comp-map-hom-standard-sequential-colimit : ( map-hom-standard-sequential-colimit C ( comp-hom-sequential-diagram A B C g f)) ~ ( ( map-hom-standard-sequential-colimit C g) ∘ ( map-hom-standard-sequential-colimit B f)) preserves-comp-map-hom-standard-sequential-colimit = - htpy-htpy-out-of-standard-sequential-colimit A - htpy-preserves-comp-map-hom-standard-sequential-colimit + preserves-comp-map-sequential-colimit-hom-sequential-diagram + ( up-standard-sequential-colimit) + ( up-standard-sequential-colimit) + ( cocone-standard-sequential-colimit C) + ( g) + ( f) ``` ### An equivalence of sequential diagrams induces an equivalence of standard sequential colimits @@ -392,56 +699,26 @@ module _ map-equiv-standard-sequential-colimit : standard-sequential-colimit A → standard-sequential-colimit B map-equiv-standard-sequential-colimit = - map-hom-standard-sequential-colimit B - ( hom-equiv-sequential-diagram B e) + map-equiv-sequential-colimit-equiv-sequential-diagram + ( up-standard-sequential-colimit) + ( up-standard-sequential-colimit) + ( e) - inv-map-equiv-standard-sequential-colimit : + map-inv-equiv-standard-sequential-colimit : standard-sequential-colimit B → standard-sequential-colimit A - inv-map-equiv-standard-sequential-colimit = - map-hom-standard-sequential-colimit A - ( hom-inv-equiv-sequential-diagram B e) - - abstract - is-section-inv-map-equiv-standard-sequential-colimit : - ( ( map-equiv-standard-sequential-colimit) ∘ - ( inv-map-equiv-standard-sequential-colimit)) ~ - ( id) - is-section-inv-map-equiv-standard-sequential-colimit = - ( inv-htpy - ( preserves-comp-map-hom-standard-sequential-colimit - ( hom-equiv-sequential-diagram B e) - ( hom-inv-equiv-sequential-diagram B e))) ∙h - ( htpy-map-hom-standard-sequential-colimit-htpy-hom-sequential-diagram - ( is-section-inv-equiv-sequential-diagram B e)) ∙h - ( preserves-id-map-hom-standard-sequential-colimit) - - is-retraction-inv-map-equiv-standard-sequential-colimit : - ( ( inv-map-equiv-standard-sequential-colimit) ∘ - ( map-equiv-standard-sequential-colimit)) ~ - ( id) - is-retraction-inv-map-equiv-standard-sequential-colimit = - ( inv-htpy - ( preserves-comp-map-hom-standard-sequential-colimit - ( hom-inv-equiv-sequential-diagram B e) - ( hom-equiv-sequential-diagram B e))) ∙h - ( htpy-map-hom-standard-sequential-colimit-htpy-hom-sequential-diagram - ( is-retraction-inv-equiv-sequential-diagram B e)) ∙h - ( preserves-id-map-hom-standard-sequential-colimit) - - is-equiv-map-hom-standard-sequential-colimit : - is-equiv map-equiv-standard-sequential-colimit - is-equiv-map-hom-standard-sequential-colimit = - is-equiv-is-invertible - ( inv-map-equiv-standard-sequential-colimit) - ( is-section-inv-map-equiv-standard-sequential-colimit) - ( is-retraction-inv-map-equiv-standard-sequential-colimit) + map-inv-equiv-standard-sequential-colimit = + map-inv-equiv-sequential-colimit-equiv-sequential-diagram + ( up-standard-sequential-colimit) + ( up-standard-sequential-colimit) + ( e) equiv-equiv-standard-sequential-colimit : standard-sequential-colimit A ≃ standard-sequential-colimit B - pr1 equiv-equiv-standard-sequential-colimit = - map-hom-standard-sequential-colimit B (hom-equiv-sequential-diagram B e) - pr2 equiv-equiv-standard-sequential-colimit = - is-equiv-map-hom-standard-sequential-colimit + equiv-equiv-standard-sequential-colimit = + equiv-sequential-colimit-equiv-sequential-diagram + ( up-standard-sequential-colimit) + ( up-standard-sequential-colimit) + ( e) ``` ### A retract of sequential diagrams induces a retract of standard sequential colimits @@ -467,36 +744,13 @@ module _ map-hom-standard-sequential-colimit A ( hom-retraction-retract-sequential-diagram A B R) - abstract - is-retraction-map-hom-retraction-retract-standard-sequential-colimit : - is-retraction - ( map-inclusion-retract-standard-sequential-colimit) - ( map-hom-retraction-retract-standard-sequential-colimit) - is-retraction-map-hom-retraction-retract-standard-sequential-colimit = - ( inv-htpy - ( preserves-comp-map-hom-standard-sequential-colimit - ( hom-retraction-retract-sequential-diagram A B R) - ( inclusion-retract-sequential-diagram A B R))) ∙h - ( htpy-map-hom-standard-sequential-colimit-htpy-hom-sequential-diagram - ( is-retraction-hom-retraction-retract-sequential-diagram A B R)) ∙h - ( preserves-id-map-hom-standard-sequential-colimit) - - retraction-retract-standard-sequential-colimit : - retraction - ( map-hom-standard-sequential-colimit B - ( inclusion-retract-sequential-diagram A B R)) - pr1 retraction-retract-standard-sequential-colimit = - map-hom-retraction-retract-standard-sequential-colimit - pr2 retraction-retract-standard-sequential-colimit = - is-retraction-map-hom-retraction-retract-standard-sequential-colimit - retract-retract-standard-sequential-colimit : (standard-sequential-colimit A) retract-of (standard-sequential-colimit B) - pr1 retract-retract-standard-sequential-colimit = - map-hom-standard-sequential-colimit B - ( inclusion-retract-sequential-diagram A B R) - pr2 retract-retract-standard-sequential-colimit = - retraction-retract-standard-sequential-colimit + retract-retract-standard-sequential-colimit = + retract-sequential-colimit-retract-sequential-diagram + ( up-standard-sequential-colimit) + ( up-standard-sequential-colimit) + ( R) ``` ## References