diff --git a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md index e3ce3d5fa6..832bb7d71b 100644 --- a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md +++ b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md @@ -34,6 +34,7 @@ open import foundation.precomposition-functions open import foundation.propositional-truncations open import foundation.propositions open import foundation.pullbacks +open import foundation.retracts-of-maps open import foundation.torsorial-type-families open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-arithmetic-unit-type @@ -528,6 +529,22 @@ module _ ( λ b → is-acyclic-equiv (compute-fiber-point a b) (l-ac a b)))) ``` +### Acyclic maps are closed under retracts + +```agda +module _ + {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : A → B) (g : X → Y) + where + + is-acyclic-map-retract-of : + f retract-of-map g → is-acyclic-map g → is-acyclic-map f + is-acyclic-map-retract-of R ac b = + is-acyclic-retract-of + ( retract-fiber-retract-map f g R b) + ( ac (map-codomain-inclusion-retract-map f g R b)) +``` + ## See also - [Dependent epimorphisms](foundation.dependent-epimorphisms.md) diff --git a/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md b/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md index 12a7138507..cdf2ec27c1 100644 --- a/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md +++ b/src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md @@ -35,6 +35,7 @@ open import foundation.precomposition-functions open import foundation.propositional-truncations open import foundation.propositions open import foundation.pullbacks +open import foundation.retracts-of-maps open import foundation.torsorial-type-families open import foundation.truncated-types open import foundation.truncation-equivalences @@ -513,7 +514,25 @@ module _ ( l-ac a b)))) ``` -### Acyclic maps are closed under pushouts +### `k`-acyclic maps are closed under retracts + +```agda +module _ + {l1 l2 l3 l4 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + (f : A → B) (g : X → Y) + where + + is-truncated-acyclic-map-retract-of : + f retract-of-map g → + is-truncated-acyclic-map k g → + is-truncated-acyclic-map k f + is-truncated-acyclic-map-retract-of R ac b = + is-truncated-acyclic-retract-of + ( retract-fiber-retract-map f g R b) + ( ac (map-codomain-inclusion-retract-map f g R b)) +``` + +### `k`-acyclic maps are closed under pushouts **Proof:** We consider the pushout squares