diff --git a/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md b/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md index f46c4bbfa4..68d89269b2 100644 --- a/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md +++ b/src/synthetic-homotopy-theory/hatchers-acyclic-type.lagda.md @@ -40,8 +40,8 @@ open import synthetic-homotopy-theory.powers-of-loops ## Idea **Hatcher's [acyclic type](synthetic-homotopy-theory.acyclic-types.md)** is a -higher inductive type [equipped](foundation.structure.md) with a base point and two -[loops](synthetic-homotopy-theory.loop-spaces.md) `a` and `b`, and +higher inductive type [equipped](foundation.structure.md) with a base point and +two [loops](synthetic-homotopy-theory.loop-spaces.md) `a` and `b`, and [identifications](foundation.identity-types.md) witnessing that `a⁵ = b³` and `b³ = (ab)²`. This type is acyclic, because the structure on Hatcher's acyclic type on any loop space is [contractible](foundation.contractible-types.md).