From e4b0e89667ae08b0de37d09268ac7131fa4dd905 Mon Sep 17 00:00:00 2001 From: Tom de Jong <43781735+tomdjong@users.noreply.github.com> Date: Mon, 30 Oct 2023 15:29:57 +0000 Subject: [PATCH] The acyclic maps are exactly the epimorphisms (#894) --- .../acyclic-maps.lagda.md | 35 +++++++++++++++++++ 1 file changed, 35 insertions(+) diff --git a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md index a19d58f7d3..dd2ae13ff5 100644 --- a/src/synthetic-homotopy-theory/acyclic-maps.lagda.md +++ b/src/synthetic-homotopy-theory/acyclic-maps.lagda.md @@ -7,11 +7,17 @@ module synthetic-homotopy-theory.acyclic-maps where
Imports ```agda +open import foundation.contractible-maps +open import foundation.contractible-types +open import foundation.epimorphisms +open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.propositions open import foundation.universe-levels open import synthetic-homotopy-theory.acyclic-types +open import synthetic-homotopy-theory.codiagonals-of-maps +open import synthetic-homotopy-theory.suspensions-of-types ```
@@ -41,6 +47,35 @@ module _ is-prop-is-acyclic-map f = is-prop-type-Prop (is-acyclic-map-Prop f) ``` +## Properties + +### A map is acyclic if and only if it is an [epimorphism](foundation.epimorphisms.md) + +```agda +module _ + {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) + where + + is-acyclic-map-is-epimorphism : is-epimorphism f → is-acyclic-map f + is-acyclic-map-is-epimorphism e b = + is-contr-equiv + ( fiber (codiagonal-map f) b) + ( equiv-fiber-codiagonal-map-suspension-fiber f b) + ( is-contr-map-is-equiv + ( is-equiv-codiagonal-map-is-epimorphism f e) + ( b)) + + is-epimorphism-is-acyclic-map : is-acyclic-map f → is-epimorphism f + is-epimorphism-is-acyclic-map ac = + is-epimorphism-is-equiv-codiagonal-map f + ( is-equiv-is-contr-map + ( λ b → + is-contr-equiv + ( suspension (fiber f b)) + ( inv-equiv (equiv-fiber-codiagonal-map-suspension-fiber f b)) + ( ac b))) +``` + ## See also - [Dependent epimorphisms](foundation.dependent-epimorphisms.md)