diff --git a/src/foundation/epimorphisms-with-respect-to-sets.lagda.md b/src/foundation/epimorphisms-with-respect-to-sets.lagda.md index 59df999c3b..2812a2585b 100644 --- a/src/foundation/epimorphisms-with-respect-to-sets.lagda.md +++ b/src/foundation/epimorphisms-with-respect-to-sets.lagda.md @@ -38,10 +38,10 @@ every set `C` the precomposition function `(B → C) → (A → C)` is an embedd ```agda is-epimorphism-Set : - {l1 l2 : Level} (l : Level) {A : UU l1} {B : UU l2} - (f : A → B) → UU (l1 ⊔ l2 ⊔ lsuc l) -is-epimorphism-Set l f = - is-epimorphism-Truncated-Type l zero-𝕋 f + {l1 l2 : Level} {A : UU l1} {B : UU l2} + (f : A → B) → UUω +is-epimorphism-Set f = + is-epimorphism-Truncated-Type zero-𝕋 f ``` ## Properties @@ -52,7 +52,7 @@ is-epimorphism-Set l f = abstract is-epimorphism-is-surjective-Set : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → - is-surjective f → {l : Level} → is-epimorphism-Set l f + is-surjective f → is-epimorphism-Set f is-epimorphism-is-surjective-Set H C = is-emb-is-injective ( is-set-function-type (is-set-type-Set C)) @@ -73,7 +73,7 @@ abstract abstract is-surjective-is-epimorphism-Set : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → - ({l : Level} → is-epimorphism-Set l f) → is-surjective f + is-epimorphism-Set f → is-surjective f is-surjective-is-epimorphism-Set {l1} {l2} {A} {B} {f} H b = map-equiv ( equiv-eq diff --git a/src/foundation/epimorphisms-with-respect-to-truncated-types.lagda.md b/src/foundation/epimorphisms-with-respect-to-truncated-types.lagda.md index 3671f502fb..670a8b3df0 100644 --- a/src/foundation/epimorphisms-with-respect-to-truncated-types.lagda.md +++ b/src/foundation/epimorphisms-with-respect-to-truncated-types.lagda.md @@ -41,10 +41,11 @@ is an embedding for every `k`-truncated type `X`. ```agda is-epimorphism-Truncated-Type : - {l1 l2 : Level} (l : Level) (k : 𝕋) {A : UU l1} {B : UU l2} → - (A → B) → UU (l1 ⊔ l2 ⊔ lsuc l) -is-epimorphism-Truncated-Type l k f = - (X : Truncated-Type l k) → is-emb (precomp f (type-Truncated-Type X)) + {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → + (A → B) → UUω +is-epimorphism-Truncated-Type k f = + {l : Level} (X : Truncated-Type l k) → + is-emb (precomp f (type-Truncated-Type X)) ``` ## Properties @@ -53,10 +54,10 @@ is-epimorphism-Truncated-Type l k f = ```agda is-epimorphism-is-epimorphism-succ-Truncated-Type : - {l1 l2 : Level} (l : Level) (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → - is-epimorphism-Truncated-Type l (succ-𝕋 k) f → - is-epimorphism-Truncated-Type l k f -is-epimorphism-is-epimorphism-succ-Truncated-Type l k f H X = + {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → + is-epimorphism-Truncated-Type (succ-𝕋 k) f → + is-epimorphism-Truncated-Type k f +is-epimorphism-is-epimorphism-succ-Truncated-Type k f H X = H (truncated-type-succ-Truncated-Type k X) ``` @@ -64,8 +65,8 @@ is-epimorphism-is-epimorphism-succ-Truncated-Type l k f H X = ```agda is-neg-one-epimorphism : - {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) → - is-epimorphism-Truncated-Type l3 neg-one-𝕋 f + {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → + is-epimorphism-Truncated-Type neg-one-𝕋 f is-neg-one-epimorphism f P = is-emb-is-prop ( is-prop-function-type (is-prop-type-Prop P)) @@ -76,10 +77,10 @@ is-neg-one-epimorphism f P = ```agda is-epimorphism-is-truncation-equivalence-Truncated-Type : - {l1 l2 : Level} (l : Level) (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → + {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-truncation-equivalence k f → - is-epimorphism-Truncated-Type l k f -is-epimorphism-is-truncation-equivalence-Truncated-Type l k f H X = + is-epimorphism-Truncated-Type k f +is-epimorphism-is-truncation-equivalence-Truncated-Type k f H X = is-emb-is-equiv (is-equiv-precomp-is-truncation-equivalence k f H X) ``` @@ -87,12 +88,12 @@ is-epimorphism-is-truncation-equivalence-Truncated-Type l k f H X = ```agda module _ - {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) + {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-epimorphism-is-epimorphism-map-trunc-Truncated-Type : - is-epimorphism-Truncated-Type l3 k (map-trunc k f) → - is-epimorphism-Truncated-Type l3 k f + is-epimorphism-Truncated-Type k (map-trunc k f) → + is-epimorphism-Truncated-Type k f is-epimorphism-is-epimorphism-map-trunc-Truncated-Type H X = is-emb-bottom-is-emb-top-is-equiv-coherence-square-maps ( precomp (map-trunc k f) (type-Truncated-Type X)) @@ -111,8 +112,8 @@ module _ ( H X) is-epimorphism-map-trunc-is-epimorphism-Truncated-Type : - is-epimorphism-Truncated-Type l3 k f → - is-epimorphism-Truncated-Type l3 k (map-trunc k f) + is-epimorphism-Truncated-Type k f → + is-epimorphism-Truncated-Type k (map-trunc k f) is-epimorphism-map-trunc-is-epimorphism-Truncated-Type H X = is-emb-top-is-emb-bottom-is-equiv-coherence-square-maps ( precomp (map-trunc k f) (type-Truncated-Type X))