diff --git a/src/synthetic-homotopy-theory/universal-cover-circle.lagda.md b/src/synthetic-homotopy-theory/universal-cover-circle.lagda.md index a5b4c0921e..50adc660f0 100644 --- a/src/synthetic-homotopy-theory/universal-cover-circle.lagda.md +++ b/src/synthetic-homotopy-theory/universal-cover-circle.lagda.md @@ -10,6 +10,7 @@ module synthetic-homotopy-theory.universal-cover-circle where ```agda open import elementary-number-theory.integers +open import elementary-number-theory.nonzero-integers open import elementary-number-theory.universal-property-integers open import foundation.action-on-identifications-dependent-functions @@ -27,6 +28,8 @@ open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types +open import foundation.injective-maps +open import foundation.negation open import foundation.precomposition-dependent-functions open import foundation.raising-universe-levels open import foundation.sets @@ -38,12 +41,13 @@ open import foundation.universe-levels open import synthetic-homotopy-theory.descent-circle open import synthetic-homotopy-theory.free-loops +open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.universal-property-circle ``` -### 12.2 The fundamental cover of the circle +### 12.2 The universal cover of the circle We show that if a type with a free loop satisfies the induction principle of the circle with respect to any universe level, then it satisfies the induction @@ -133,67 +137,73 @@ abstract lower-dependent-universal-property-circle lzero ``` -### The fundamental cover +### The universal cover ```agda module _ { l1 : Level} {S : UU l1} (l : free-loop S) where - descent-data-Fundamental-cover-circle : - descent-data-circle lzero - pr1 descent-data-Fundamental-cover-circle = ℤ - pr2 descent-data-Fundamental-cover-circle = equiv-succ-ℤ + descent-data-universal-cover-circle : descent-data-circle lzero + pr1 descent-data-universal-cover-circle = ℤ + pr2 descent-data-universal-cover-circle = equiv-succ-ℤ module _ ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) where abstract - - Fundamental-cover-circle : family-with-descent-data-circle l lzero - Fundamental-cover-circle = + universal-cover-family-with-descent-data-circle : + family-with-descent-data-circle l lzero + universal-cover-family-with-descent-data-circle = family-with-descent-data-circle-descent-data l ( universal-property-dependent-universal-property-circle l dup-circle) - ( descent-data-Fundamental-cover-circle) + ( descent-data-universal-cover-circle) - fundamental-cover-circle : S → UU lzero - fundamental-cover-circle = - family-family-with-descent-data-circle Fundamental-cover-circle + universal-cover-circle : S → UU lzero + universal-cover-circle = + family-family-with-descent-data-circle + universal-cover-family-with-descent-data-circle - compute-fiber-fundamental-cover-circle : - ℤ ≃ fundamental-cover-circle (base-free-loop l) - compute-fiber-fundamental-cover-circle = - equiv-family-with-descent-data-circle Fundamental-cover-circle + compute-fiber-universal-cover-circle : + ℤ ≃ universal-cover-circle (base-free-loop l) + compute-fiber-universal-cover-circle = + equiv-family-with-descent-data-circle + universal-cover-family-with-descent-data-circle - compute-tr-fundamental-cover-circle : + compute-tr-universal-cover-circle : coherence-square-maps - ( map-equiv compute-fiber-fundamental-cover-circle) + ( map-equiv compute-fiber-universal-cover-circle) ( succ-ℤ) - ( tr fundamental-cover-circle (loop-free-loop l)) - ( map-equiv compute-fiber-fundamental-cover-circle) - compute-tr-fundamental-cover-circle = + ( tr universal-cover-circle (loop-free-loop l)) + ( map-equiv compute-fiber-universal-cover-circle) + compute-tr-universal-cover-circle = coherence-square-family-with-descent-data-circle - Fundamental-cover-circle + universal-cover-family-with-descent-data-circle + + map-compute-fiber-universal-cover-circle : + ℤ → universal-cover-circle (base-free-loop l) + map-compute-fiber-universal-cover-circle = + map-equiv compute-fiber-universal-cover-circle ``` -### The fundamental cover of the circle is a family of sets +### The universal cover of the circle is a family of sets ```agda abstract - is-set-fundamental-cover-circle : + is-set-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - ( x : X) → is-set (fundamental-cover-circle l dup-circle x) - is-set-fundamental-cover-circle l dup-circle = + ( x : X) → is-set (universal-cover-circle l dup-circle x) + is-set-universal-cover-circle l dup-circle = is-connected-circle' l ( dup-circle) - ( λ x → is-set (fundamental-cover-circle l dup-circle x)) - ( λ x → is-prop-is-set (fundamental-cover-circle l dup-circle x)) + ( λ x → is-set (universal-cover-circle l dup-circle x)) + ( λ x → is-prop-is-set (universal-cover-circle l dup-circle x)) ( is-trunc-is-equiv' zero-𝕋 ℤ - ( map-equiv (compute-fiber-fundamental-cover-circle l dup-circle)) + ( map-equiv (compute-fiber-universal-cover-circle l dup-circle)) ( is-equiv-map-equiv - ( compute-fiber-fundamental-cover-circle l dup-circle)) + ( compute-fiber-universal-cover-circle l dup-circle)) ( is-set-ℤ)) ``` @@ -386,241 +396,265 @@ equiv-dependent-identification-contraction-total-space' ``` We use the above construction to provide sufficient conditions for the total -space of the fundamental cover to be contractible. +space of the universal cover to be contractible. ```agda -center-total-fundamental-cover-circle : +center-total-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - Σ X (fundamental-cover-circle l dup-circle) -pr1 (center-total-fundamental-cover-circle l dup-circle) = base-free-loop l -pr2 (center-total-fundamental-cover-circle l dup-circle) = - map-equiv ( compute-fiber-fundamental-cover-circle l dup-circle) zero-ℤ + Σ X (universal-cover-circle l dup-circle) +pr1 (center-total-universal-cover-circle l dup-circle) = base-free-loop l +pr2 (center-total-universal-cover-circle l dup-circle) = + map-equiv ( compute-fiber-universal-cover-circle l dup-circle) zero-ℤ -dependent-identification-loop-contraction-total-fundamental-cover-circle : +dependent-identification-loop-contraction-total-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → ( h : contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) - ( compute-fiber-fundamental-cover-circle l dup-circle)) → + ( compute-fiber-universal-cover-circle l dup-circle)) → ( p : dependent-identification-contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-tr-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h)) → dependent-identification ( contraction-total-space - ( center-total-fundamental-cover-circle l dup-circle)) + ( center-total-universal-cover-circle l dup-circle)) ( pr2 l) ( map-inv-equiv ( equiv-contraction-total-space - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) - ( compute-fiber-fundamental-cover-circle l dup-circle)) + ( compute-fiber-universal-cover-circle l dup-circle)) ( h)) ( map-inv-equiv ( equiv-contraction-total-space - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) - ( compute-fiber-fundamental-cover-circle l dup-circle)) + ( compute-fiber-universal-cover-circle l dup-circle)) ( h)) -dependent-identification-loop-contraction-total-fundamental-cover-circle +dependent-identification-loop-contraction-total-universal-cover-circle l dup-circle h p = map-dependent-identification-contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-tr-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h) ( p) -contraction-total-fundamental-cover-circle-data : +contraction-total-universal-cover-circle-data : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → ( h : contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) - ( compute-fiber-fundamental-cover-circle l dup-circle)) → + ( compute-fiber-universal-cover-circle l dup-circle)) → ( p : dependent-identification-contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-tr-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h)) → - ( t : Σ X (fundamental-cover-circle l dup-circle)) → - Id (center-total-fundamental-cover-circle l dup-circle) t -contraction-total-fundamental-cover-circle-data + ( t : Σ X (universal-cover-circle l dup-circle)) → + Id (center-total-universal-cover-circle l dup-circle) t +contraction-total-universal-cover-circle-data {l1} l dup-circle h p (pair x y) = map-inv-is-equiv ( lower-dependent-universal-property-circle { l2 = lsuc lzero} l1 l dup-circle ( contraction-total-space - ( center-total-fundamental-cover-circle l dup-circle))) + ( center-total-universal-cover-circle l dup-circle))) ( pair ( map-inv-equiv ( equiv-contraction-total-space - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) - ( compute-fiber-fundamental-cover-circle l dup-circle)) + ( compute-fiber-universal-cover-circle l dup-circle)) ( h)) - ( dependent-identification-loop-contraction-total-fundamental-cover-circle + ( dependent-identification-loop-contraction-total-universal-cover-circle l dup-circle h p)) x y -is-torsorial-fundamental-cover-circle-data : +is-torsorial-universal-cover-circle-data : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → ( h : contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) - ( compute-fiber-fundamental-cover-circle l dup-circle)) → + ( compute-fiber-universal-cover-circle l dup-circle)) → ( p : dependent-identification-contraction-total-space' - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-tr-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h)) → - is-torsorial (fundamental-cover-circle l dup-circle) -pr1 (is-torsorial-fundamental-cover-circle-data l dup-circle h p) = - center-total-fundamental-cover-circle l dup-circle -pr2 (is-torsorial-fundamental-cover-circle-data l dup-circle h p) = - contraction-total-fundamental-cover-circle-data l dup-circle h p + is-torsorial (universal-cover-circle l dup-circle) +pr1 (is-torsorial-universal-cover-circle-data l dup-circle h p) = + center-total-universal-cover-circle l dup-circle +pr2 (is-torsorial-universal-cover-circle-data l dup-circle h p) = + contraction-total-universal-cover-circle-data l dup-circle h p ``` ### Section 12.5 The identity type of the circle ```agda -path-total-fundamental-cover-circle : +path-total-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) ( k : ℤ) → Id - { A = Σ X (fundamental-cover-circle l dup-circle)} + { A = Σ X (universal-cover-circle l dup-circle)} ( pair ( base-free-loop l) - ( map-equiv (compute-fiber-fundamental-cover-circle l dup-circle) k)) + ( map-equiv (compute-fiber-universal-cover-circle l dup-circle) k)) ( pair ( base-free-loop l) ( map-equiv - ( compute-fiber-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) ( succ-ℤ k))) -path-total-fundamental-cover-circle l dup-circle k = +path-total-universal-cover-circle l dup-circle k = segment-Σ ( loop-free-loop l) ( equiv-succ-ℤ) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-fiber-fundamental-cover-circle l dup-circle) - ( compute-tr-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) + ( compute-tr-universal-cover-circle l dup-circle) k -CONTRACTION-fundamental-cover-circle : +CONTRACTION-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → UU l1 -CONTRACTION-fundamental-cover-circle l dup-circle = +CONTRACTION-universal-cover-circle l dup-circle = ELIM-ℤ ( λ k → Id - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( pair ( base-free-loop l) ( map-equiv - ( compute-fiber-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) ( k)))) ( refl) ( λ k → equiv-concat' - ( center-total-fundamental-cover-circle l dup-circle) - ( path-total-fundamental-cover-circle l dup-circle k)) + ( center-total-universal-cover-circle l dup-circle) + ( path-total-universal-cover-circle l dup-circle k)) -Contraction-fundamental-cover-circle : +Contraction-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - CONTRACTION-fundamental-cover-circle l dup-circle -Contraction-fundamental-cover-circle l dup-circle = + CONTRACTION-universal-cover-circle l dup-circle +Contraction-universal-cover-circle l dup-circle = Elim-ℤ ( λ k → Id - ( center-total-fundamental-cover-circle l dup-circle) + ( center-total-universal-cover-circle l dup-circle) ( pair ( base-free-loop l) ( map-equiv - ( compute-fiber-fundamental-cover-circle l dup-circle) + ( compute-fiber-universal-cover-circle l dup-circle) ( k)))) ( refl) ( λ k → equiv-concat' - ( center-total-fundamental-cover-circle l dup-circle) - ( path-total-fundamental-cover-circle l dup-circle k)) + ( center-total-universal-cover-circle l dup-circle) + ( path-total-universal-cover-circle l dup-circle k)) abstract - is-torsorial-fundamental-cover-circle : + is-torsorial-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - is-torsorial (fundamental-cover-circle l dup-circle) - is-torsorial-fundamental-cover-circle l dup-circle = - is-torsorial-fundamental-cover-circle-data l dup-circle - ( pr1 (Contraction-fundamental-cover-circle l dup-circle)) + is-torsorial (universal-cover-circle l dup-circle) + is-torsorial-universal-cover-circle l dup-circle = + is-torsorial-universal-cover-circle-data l dup-circle + ( pr1 (Contraction-universal-cover-circle l dup-circle)) ( inv-htpy - ( pr2 (pr2 (Contraction-fundamental-cover-circle l dup-circle)))) + ( pr2 (pr2 (Contraction-universal-cover-circle l dup-circle)))) -point-fundamental-cover-circle : +point-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - fundamental-cover-circle l dup-circle (base-free-loop l) -point-fundamental-cover-circle l dup-circle = - map-equiv (compute-fiber-fundamental-cover-circle l dup-circle) zero-ℤ + universal-cover-circle l dup-circle (base-free-loop l) +point-universal-cover-circle l dup-circle = + map-equiv (compute-fiber-universal-cover-circle l dup-circle) zero-ℤ -fundamental-cover-circle-eq : +universal-cover-circle-eq : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - ( x : X) → Id (base-free-loop l) x → fundamental-cover-circle l dup-circle x -fundamental-cover-circle-eq l dup-circle .(base-free-loop l) refl = - point-fundamental-cover-circle l dup-circle + ( x : X) → Id (base-free-loop l) x → universal-cover-circle l dup-circle x +universal-cover-circle-eq l dup-circle .(base-free-loop l) refl = + point-universal-cover-circle l dup-circle abstract - is-equiv-fundamental-cover-circle-eq : + is-equiv-universal-cover-circle-eq : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - ( x : X) → is-equiv (fundamental-cover-circle-eq l dup-circle x) - is-equiv-fundamental-cover-circle-eq l dup-circle = + ( x : X) → is-equiv (universal-cover-circle-eq l dup-circle x) + is-equiv-universal-cover-circle-eq l dup-circle = fundamental-theorem-id - ( is-torsorial-fundamental-cover-circle l dup-circle) - ( fundamental-cover-circle-eq l dup-circle) + ( is-torsorial-universal-cover-circle l dup-circle) + ( universal-cover-circle-eq l dup-circle) -equiv-fundamental-cover-circle : +equiv-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → ( x : X) → - ( Id (base-free-loop l) x) ≃ (fundamental-cover-circle l dup-circle x) -equiv-fundamental-cover-circle l dup-circle x = + ( Id (base-free-loop l) x) ≃ (universal-cover-circle l dup-circle x) +equiv-universal-cover-circle l dup-circle x = pair - ( fundamental-cover-circle-eq l dup-circle x) - ( is-equiv-fundamental-cover-circle-eq l dup-circle x) + ( universal-cover-circle-eq l dup-circle x) + ( is-equiv-universal-cover-circle-eq l dup-circle x) compute-loop-space-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : {l2 : Level} → dependent-universal-property-circle l2 l) → - ( Id (base-free-loop l) (base-free-loop l)) ≃ ℤ + type-Ω (X , base-free-loop l) ≃ ℤ compute-loop-space-circle l dup-circle = - ( inv-equiv (compute-fiber-fundamental-cover-circle l dup-circle)) ∘e - ( equiv-fundamental-cover-circle l dup-circle (base-free-loop l)) + ( inv-equiv (compute-fiber-universal-cover-circle l dup-circle)) ∘e + ( equiv-universal-cover-circle l dup-circle (base-free-loop l)) +``` + +### The loop of the circle is nontrivial + +```agda +module _ + {l1 : Level} {X : UU l1} (l : free-loop X) + (H : {l2 : Level} → dependent-universal-property-circle l2 l) + where + + is-nontrivial-loop-dependent-universal-property-circle : + ¬ (loop-free-loop l = refl) + is-nontrivial-loop-dependent-universal-property-circle p = + is-nonzero-one-ℤ + ( is-injective-equiv + ( compute-fiber-universal-cover-circle l H) + ( ( compute-tr-universal-cover-circle l H zero-ℤ) ∙ + ( ap + ( λ q → + tr + ( universal-cover-circle l H) + ( q) + ( map-compute-fiber-universal-cover-circle l H zero-ℤ)) + ( p)))) ```