From fb2b6740b798912b62e6761bee8a783d0c81943c Mon Sep 17 00:00:00 2001 From: Fredrik Bakke Date: Tue, 21 Nov 2023 19:15:06 +0100 Subject: [PATCH] Optimize proof of `equiv-natural-isomorphism-htpy-map-is-category-Precategory` (#929) Found after discussion on Discord. The optimization is possible because of #873. --- .../category-of-maps-categories.lagda.md | 21 ++----------------- .../isomorphisms-in-precategories.lagda.md | 2 +- 2 files changed, 3 insertions(+), 20 deletions(-) diff --git a/src/category-theory/category-of-maps-categories.lagda.md b/src/category-theory/category-of-maps-categories.lagda.md index 660aa85375..1226b6f854 100644 --- a/src/category-theory/category-of-maps-categories.lagda.md +++ b/src/category-theory/category-of-maps-categories.lagda.md @@ -61,7 +61,7 @@ module _ ( natural-isomorphism-map-Precategory C D F G) equiv-natural-isomorphism-htpy-map-is-category-Precategory F G = ( equiv-right-swap-Σ) ∘e - ( equiv-Σ + ( equiv-Σ-equiv-base ( is-natural-transformation-map-Precategory C D F G ∘ pr1) ( ( distributive-Π-Σ) ∘e ( equiv-Π-equiv-family @@ -69,24 +69,7 @@ module _ extensionality-obj-Category ( D , is-category-D) ( obj-map-Precategory C D F x) - ( obj-map-Precategory C D G x)))) - ( λ K → - equiv-implicit-Π-equiv-family - ( λ x → - equiv-implicit-Π-equiv-family - ( λ y → - equiv-Π-equiv-family - ( λ a → - ( equiv-eq - ( ap-binary - ( λ p q → - coherence-square-hom-Precategory D - ( hom-map-Precategory C D F a) - ( p) - ( q) - ( hom-map-Precategory C D G a)) - ( compute-hom-iso-eq-Precategory D (K x)) - ( compute-hom-iso-eq-Precategory D (K y))))))))) + ( obj-map-Precategory C D G x))))) extensionality-map-is-category-Precategory : (F G : map-Precategory C D) → diff --git a/src/category-theory/isomorphisms-in-precategories.lagda.md b/src/category-theory/isomorphisms-in-precategories.lagda.md index a8c2a3b935..155a360e41 100644 --- a/src/category-theory/isomorphisms-in-precategories.lagda.md +++ b/src/category-theory/isomorphisms-in-precategories.lagda.md @@ -175,7 +175,7 @@ module _ (p : x = y) → hom-eq-Precategory C x y p = hom-iso-Precategory C (iso-eq-Precategory x y p) - compute-hom-iso-eq-Precategory refl = refl + compute-hom-iso-eq-Precategory p = refl ``` ## Properties