diff --git a/src/category-theory.lagda.md b/src/category-theory.lagda.md index dbfc94047a..2fe0b19e5f 100644 --- a/src/category-theory.lagda.md +++ b/src/category-theory.lagda.md @@ -120,6 +120,8 @@ open import category-theory.opposite-categories public open import category-theory.opposite-large-precategories public open import category-theory.opposite-precategories public open import category-theory.opposite-preunivalent-categories public +open import category-theory.pointed-endofunctors-categories public +open import category-theory.pointed-endofunctors-precategories public open import category-theory.precategories public open import category-theory.precategory-of-elements-of-a-presheaf public open import category-theory.precategory-of-functors public diff --git a/src/category-theory/monads-on-categories.lagda.md b/src/category-theory/monads-on-categories.lagda.md index 181b7e3ba3..c09db9468b 100644 --- a/src/category-theory/monads-on-categories.lagda.md +++ b/src/category-theory/monads-on-categories.lagda.md @@ -8,23 +8,240 @@ module category-theory.monads-on-categories where ```agda open import category-theory.categories +open import category-theory.functors-categories open import category-theory.monads-on-precategories -open import category-theory.precategories +open import category-theory.natural-transformations-functors-categories +open import category-theory.pointed-endofunctors-categories +open import foundation.dependent-pair-types +open import foundation.identity-types open import foundation.universe-levels + +open import foundation-core.cartesian-product-types ``` +## Idea + +A {{#concept "monad" Disambiguation="on a category" Agda=monad-Category}} on a +[category](category-theory.categories.md) `C` consists of an +[endofunctor](category-theory.functors-categories.md) `T : C → C` together with +two +[natural transformations](category-theory.natural-transformations-functors-categories.md): +`η : 1_C ⇒ T` and `μ : T² ⇒ T`, where `1_C : C → C` is the identity functor for +`C`, and `T²` is the functor `T ∘ T : C → C`. These must satisfy the following +{{#concept "monad laws" Disambiguation="monad on a category"}}: + +- **Associativity:** `μ ∘ (T • μ) = μ ∘ (μ • T)` +- The **left unit law:** `μ ∘ (T • η) = 1_T` +- The **right unit law:** `μ ∘ (η • T) = 1_T`. + +Here, `•` denotes +[whiskering](category-theory.natural-transformations-functors-precategories.md#whiskering), +and `1_T : T ⇒ T` denotes the identity natural transformation for `T`. + ## Definitions +### Multiplication structure on a pointed endofunctor on a category + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) + (T : pointed-endofunctor-Category C) + where + + structure-multiplication-pointed-endofunctor-Category : UU (l1 ⊔ l2) + structure-multiplication-pointed-endofunctor-Category = + structure-multiplication-pointed-endofunctor-Precategory + ( precategory-Category C) + ( T) +``` + +### Associativity of multiplication on a pointed endofunctor on a category + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) + (T : pointed-endofunctor-Category C) + (μ : structure-multiplication-pointed-endofunctor-Category C T) + where + + associative-mul-pointed-endofunctor-Category : UU (l1 ⊔ l2) + associative-mul-pointed-endofunctor-Category = + associative-mul-pointed-endofunctor-Precategory + ( precategory-Category C) + ( T) + ( μ) +``` + +### The left unit law on a multiplication on a pointed endofunctor + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) + (T : pointed-endofunctor-Category C) + (μ : structure-multiplication-pointed-endofunctor-Category C T) + where + + left-unit-law-mul-pointed-endofunctor-Category : UU (l1 ⊔ l2) + left-unit-law-mul-pointed-endofunctor-Category = + left-unit-law-mul-pointed-endofunctor-Precategory + ( precategory-Category C) + ( T) + ( μ) +``` + +### The right unit law on a multiplication on a pointed endofunctor + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) + (T : pointed-endofunctor-Category C) + (μ : structure-multiplication-pointed-endofunctor-Category C T) + where + + right-unit-law-mul-pointed-endofunctor-Category : UU (l1 ⊔ l2) + right-unit-law-mul-pointed-endofunctor-Category = + right-unit-law-mul-pointed-endofunctor-Precategory + ( precategory-Category C) + ( T) + ( μ) +``` + +### The structure of a monad on a pointed endofunctor on a category + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) + (T : pointed-endofunctor-Category C) + where + + structure-monad-pointed-endofunctor-Category : UU (l1 ⊔ l2) + structure-monad-pointed-endofunctor-Category = + structure-monad-pointed-endofunctor-Precategory + ( precategory-Category C) + ( T) +``` + ### The type of monads on categories ```agda module _ - {l : Level} (C : Category l l) + {l1 l2 : Level} (C : Category l1 l2) where - monad-Category : UU l - monad-Category = monad-Precategory l (precategory-Category C) + monad-Category : UU (l1 ⊔ l2) + monad-Category = monad-Precategory (precategory-Category C) + + module _ + (T : monad-Category) + where + + pointed-endofunctor-monad-Category : + pointed-endofunctor-Category C + pointed-endofunctor-monad-Category = + pointed-endofunctor-monad-Precategory (precategory-Category C) T + + endofunctor-monad-Category : + functor-Category C C + endofunctor-monad-Category = + endofunctor-monad-Precategory (precategory-Category C) T + + obj-endofunctor-monad-Category : + obj-Category C → obj-Category C + obj-endofunctor-monad-Category = + obj-endofunctor-monad-Precategory (precategory-Category C) T + + hom-endofunctor-monad-Category : + {X Y : obj-Category C} → + hom-Category C X Y → + hom-Category C + ( obj-endofunctor-monad-Category X) + ( obj-endofunctor-monad-Category Y) + hom-endofunctor-monad-Category = + hom-endofunctor-monad-Precategory (precategory-Category C) T + + preserves-id-endofunctor-monad-Category : + (X : obj-Category C) → + hom-endofunctor-monad-Category (id-hom-Category C {X}) = + id-hom-Category C + preserves-id-endofunctor-monad-Category = + preserves-id-endofunctor-monad-Precategory (precategory-Category C) T + + preserves-comp-endofunctor-monad-Category : + {X Y Z : obj-Category C} → + (g : hom-Category C Y Z) (f : hom-Category C X Y) → + hom-endofunctor-monad-Category (comp-hom-Category C g f) = + comp-hom-Category C + ( hom-endofunctor-monad-Category g) + ( hom-endofunctor-monad-Category f) + preserves-comp-endofunctor-monad-Category = + preserves-comp-endofunctor-monad-Precategory (precategory-Category C) T + + unit-monad-Category : + pointing-endofunctor-Category C endofunctor-monad-Category + unit-monad-Category = + unit-monad-Precategory (precategory-Category C) T + + hom-unit-monad-Category : + hom-family-functor-Category C C + ( id-functor-Category C) + ( endofunctor-monad-Category) + hom-unit-monad-Category = + hom-unit-monad-Precategory (precategory-Category C) T + + naturality-unit-monad-Category : + is-natural-transformation-Category C C + ( id-functor-Category C) + ( endofunctor-monad-Category) + ( hom-unit-monad-Category) + naturality-unit-monad-Category = + naturality-unit-monad-Precategory (precategory-Category C) T + + mul-monad-Category : + structure-multiplication-pointed-endofunctor-Category C + ( pointed-endofunctor-monad-Category) + mul-monad-Category = + mul-monad-Precategory (precategory-Category C) T + + hom-mul-monad-Category : + hom-family-functor-Category C C + ( comp-functor-Category C C C + ( endofunctor-monad-Category) + ( endofunctor-monad-Category)) + ( endofunctor-monad-Category) + hom-mul-monad-Category = + hom-mul-monad-Precategory (precategory-Category C) T + + naturality-mul-monad-Category : + is-natural-transformation-Category C C + ( comp-functor-Category C C C + ( endofunctor-monad-Category) + ( endofunctor-monad-Category)) + ( endofunctor-monad-Category) + ( hom-mul-monad-Category) + naturality-mul-monad-Category = + naturality-mul-monad-Precategory (precategory-Category C) T + + associative-mul-monad-Category : + associative-mul-pointed-endofunctor-Category C + ( pointed-endofunctor-monad-Category) + ( mul-monad-Category) + associative-mul-monad-Category = + associative-mul-monad-Precategory (precategory-Category C) T + + left-unit-law-mul-monad-Category : + left-unit-law-mul-pointed-endofunctor-Category C + ( pointed-endofunctor-monad-Category) + ( mul-monad-Category) + left-unit-law-mul-monad-Category = + left-unit-law-mul-monad-Precategory (precategory-Category C) T + + right-unit-law-mul-monad-Category : + right-unit-law-mul-pointed-endofunctor-Category C + ( pointed-endofunctor-monad-Category) + ( mul-monad-Category) + right-unit-law-mul-monad-Category = + right-unit-law-mul-monad-Precategory (precategory-Category C) T ``` diff --git a/src/category-theory/monads-on-precategories.lagda.md b/src/category-theory/monads-on-precategories.lagda.md index 57719359e6..63225d5d66 100644 --- a/src/category-theory/monads-on-precategories.lagda.md +++ b/src/category-theory/monads-on-precategories.lagda.md @@ -9,6 +9,7 @@ module category-theory.monads-on-precategories where ```agda open import category-theory.functors-precategories open import category-theory.natural-transformations-functors-precategories +open import category-theory.pointed-endofunctors-precategories open import category-theory.precategories open import foundation.dependent-pair-types @@ -22,17 +23,18 @@ open import foundation-core.cartesian-product-types ## Idea -A monad on a precategory `C` consists of an -endo[functor](category-theory.functors-precategories.md) `T : C → C` together +A {{#concept "monad" Disambiguation="on a precategory" Agda=monad-Precategory}} +on a [precategory](category-theory.precategories.md) `C` consists of an +[endofunctor](category-theory.functors-precategories.md) `T : C → C` together with two [natural transformations](category-theory.natural-transformations-functors-precategories.md): -`η : 1_C ⇒ T` and `μ : T² ⇒ T` (where `1_C : C → C` is the identity functor for -`C`, and `T²` is the functor `T ∘ T : C → C`). +`η : 1_C ⇒ T` and `μ : T² ⇒ T`, where `1_C : C → C` is the identity functor for +`C`, and `T²` is the functor `T ∘ T : C → C`. These must satisfy the following +{{#concept "monad laws" Disambiguation="monad on a precategory"}}: -These must fulfill the _coherence conditions_: - -- `μ ∘ (T • μ) = μ ∘ (μ • T)`, and -- `μ ∘ (T • η) = μ ∘ (η • T) = 1_T`. +- **Associativity:** `μ ∘ (T • μ) = μ ∘ (μ • T)` +- The **left unit law:** `μ ∘ (T • η) = 1_T` +- The **right unit law:** `μ ∘ (η • T) = 1_T`. Here, `•` denotes [whiskering](category-theory.natural-transformations-functors-precategories.md#whiskering), @@ -40,95 +42,276 @@ and `1_T : T ⇒ T` denotes the identity natural transformation for `T`. ## Definitions +### Multiplication structure on a pointed endofunctor on a precategory + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + (T : pointed-endofunctor-Precategory C) + where + + structure-multiplication-pointed-endofunctor-Precategory : UU (l1 ⊔ l2) + structure-multiplication-pointed-endofunctor-Precategory = + natural-transformation-Precategory C C + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) +``` + +### Associativity of multiplication on a pointed endofunctor on a precategory + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + (T : pointed-endofunctor-Precategory C) + (μ : structure-multiplication-pointed-endofunctor-Precategory C T) + where + + associative-mul-pointed-endofunctor-Precategory : UU (l1 ⊔ l2) + associative-mul-pointed-endofunctor-Precategory = + comp-natural-transformation-Precategory C C + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T))) + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) + ( μ) + ( left-whisker-natural-transformation-Precategory C C C + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T) + ( μ)) = + comp-natural-transformation-Precategory C C + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T))) + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) + ( μ) + ( right-whisker-natural-transformation-Precategory C C C + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) + ( μ) + ( functor-pointed-endofunctor-Precategory C T)) +``` + +### The left unit law on a multiplication on a pointed endofunctor + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + (T : pointed-endofunctor-Precategory C) + (μ : structure-multiplication-pointed-endofunctor-Precategory C T) + where + + left-unit-law-mul-pointed-endofunctor-Precategory : UU (l1 ⊔ l2) + left-unit-law-mul-pointed-endofunctor-Precategory = + comp-natural-transformation-Precategory C C + ( functor-pointed-endofunctor-Precategory C T) + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) + ( μ) + ( left-whisker-natural-transformation-Precategory C C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T) + ( pointing-pointed-endofunctor-Precategory C T)) = + id-natural-transformation-Precategory C C + ( functor-pointed-endofunctor-Precategory C T) +``` + +### The right unit law on a multiplication on a pointed endofunctor + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + (T : pointed-endofunctor-Precategory C) + (μ : structure-multiplication-pointed-endofunctor-Precategory C T) + where + + right-unit-law-mul-pointed-endofunctor-Precategory : UU (l1 ⊔ l2) + right-unit-law-mul-pointed-endofunctor-Precategory = + comp-natural-transformation-Precategory C C + ( functor-pointed-endofunctor-Precategory C T) + ( comp-functor-Precategory C C C + ( functor-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) + ( functor-pointed-endofunctor-Precategory C T) + ( μ) + ( right-whisker-natural-transformation-Precategory C C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory C T) + ( pointing-pointed-endofunctor-Precategory C T) + ( functor-pointed-endofunctor-Precategory C T)) = + id-natural-transformation-Precategory C C + ( functor-pointed-endofunctor-Precategory C T) +``` + +### The structure of a monad on a pointed endofunctor on a precategory + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + (T : pointed-endofunctor-Precategory C) + where + + structure-monad-pointed-endofunctor-Precategory : UU (l1 ⊔ l2) + structure-monad-pointed-endofunctor-Precategory = + Σ ( structure-multiplication-pointed-endofunctor-Precategory C T) + ( λ μ → + associative-mul-pointed-endofunctor-Precategory C T μ × + left-unit-law-mul-pointed-endofunctor-Precategory C T μ × + right-unit-law-mul-pointed-endofunctor-Precategory C T μ) +``` + ### The type of monads on precategories ```agda -monad-Precategory : - (l : Level) (C : Precategory l l) → UU l -monad-Precategory l C = - Σ ( functor-Precategory C C) - ( λ T → - Σ ( natural-transformation-Precategory C C (id-functor-Precategory C) T) - ( λ eta → - Σ ( natural-transformation-Precategory - ( C) - ( C) - ( comp-functor-Precategory C C C T T) T) - ( λ mu → - Σ ( comp-natural-transformation-Precategory - ( C) - ( C) - ( comp-functor-Precategory - ( C) - ( C) - ( C) - ( T) - ( comp-functor-Precategory C C C T T)) - ( comp-functor-Precategory C C C T T) - ( T) - ( mu) - ( whiskering-functor-natural-transformation-Precategory - {C = C} - {D = C} - {E = C} - ( comp-functor-Precategory C C C T T) - ( T) - ( T) - ( mu)) - = - comp-natural-transformation-Precategory - ( C) - ( C) - (comp-functor-Precategory - ( C) - ( C) - ( C) - ( comp-functor-Precategory C C C T T) T) - ( comp-functor-Precategory C C C T T) - ( T) - ( mu) - ( whiskering-natural-transformation-functor-Precategory - {C = C} - {D = C} - {E = C} - ( comp-functor-Precategory C C C T T) - ( T) - ( mu) - ( T))) - ( λ _ → - product - ( comp-natural-transformation-Precategory - ( C) - ( C) - ( T) - ( comp-functor-Precategory C C C T T) - ( T) - ( mu) - ( whiskering-functor-natural-transformation-Precategory - {C = C} - {D = C} - {E = C} - ( id-functor-Precategory C) - ( T) - ( T) - ( eta)) - = - id-natural-transformation-Precategory C C T) - ( comp-natural-transformation-Precategory - ( C) - ( C) - ( T) - ( comp-functor-Precategory C C C T T) - ( T) - ( mu) - ( whiskering-natural-transformation-functor-Precategory - {C = C} - {D = C} - {E = C} - ( id-functor-Precategory C) - ( T) - ( eta) - ( T)) - = - id-natural-transformation-Precategory C C T))))) +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + where + + monad-Precategory : UU (l1 ⊔ l2) + monad-Precategory = + Σ ( pointed-endofunctor-Precategory C) + ( structure-monad-pointed-endofunctor-Precategory C) + + module _ + (T : monad-Precategory) + where + + pointed-endofunctor-monad-Precategory : + pointed-endofunctor-Precategory C + pointed-endofunctor-monad-Precategory = pr1 T + + endofunctor-monad-Precategory : + functor-Precategory C C + endofunctor-monad-Precategory = + functor-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + + obj-endofunctor-monad-Precategory : + obj-Precategory C → obj-Precategory C + obj-endofunctor-monad-Precategory = + obj-functor-Precategory C C endofunctor-monad-Precategory + + hom-endofunctor-monad-Precategory : + {X Y : obj-Precategory C} → + hom-Precategory C X Y → + hom-Precategory C + ( obj-endofunctor-monad-Precategory X) + ( obj-endofunctor-monad-Precategory Y) + hom-endofunctor-monad-Precategory = + hom-functor-Precategory C C endofunctor-monad-Precategory + + preserves-id-endofunctor-monad-Precategory : + (X : obj-Precategory C) → + hom-endofunctor-monad-Precategory (id-hom-Precategory C {X}) = + id-hom-Precategory C + preserves-id-endofunctor-monad-Precategory = + preserves-id-functor-Precategory C C endofunctor-monad-Precategory + + preserves-comp-endofunctor-monad-Precategory : + {X Y Z : obj-Precategory C} → + (g : hom-Precategory C Y Z) (f : hom-Precategory C X Y) → + hom-endofunctor-monad-Precategory (comp-hom-Precategory C g f) = + comp-hom-Precategory C + ( hom-endofunctor-monad-Precategory g) + ( hom-endofunctor-monad-Precategory f) + preserves-comp-endofunctor-monad-Precategory = + preserves-comp-functor-Precategory C C + ( endofunctor-monad-Precategory) + + unit-monad-Precategory : + pointing-endofunctor-Precategory C endofunctor-monad-Precategory + unit-monad-Precategory = + pointing-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + + hom-unit-monad-Precategory : + hom-family-functor-Precategory C C + ( id-functor-Precategory C) + ( endofunctor-monad-Precategory) + hom-unit-monad-Precategory = + hom-family-pointing-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + + naturality-unit-monad-Precategory : + is-natural-transformation-Precategory C C + ( id-functor-Precategory C) + ( endofunctor-monad-Precategory) + ( hom-unit-monad-Precategory) + naturality-unit-monad-Precategory = + naturality-pointing-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + + mul-monad-Precategory : + structure-multiplication-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + mul-monad-Precategory = pr1 (pr2 T) + + hom-mul-monad-Precategory : + hom-family-functor-Precategory C C + ( comp-functor-Precategory C C C + ( endofunctor-monad-Precategory) + ( endofunctor-monad-Precategory)) + ( endofunctor-monad-Precategory) + hom-mul-monad-Precategory = + hom-family-natural-transformation-Precategory C C + ( comp-functor-Precategory C C C + ( endofunctor-monad-Precategory) + ( endofunctor-monad-Precategory)) + ( endofunctor-monad-Precategory) + ( mul-monad-Precategory) + + naturality-mul-monad-Precategory : + is-natural-transformation-Precategory C C + ( comp-functor-Precategory C C C + ( endofunctor-monad-Precategory) + ( endofunctor-monad-Precategory)) + ( endofunctor-monad-Precategory) + ( hom-mul-monad-Precategory) + naturality-mul-monad-Precategory = + naturality-natural-transformation-Precategory C C + ( comp-functor-Precategory C C C + ( endofunctor-monad-Precategory) + ( endofunctor-monad-Precategory)) + ( endofunctor-monad-Precategory) + ( mul-monad-Precategory) + + associative-mul-monad-Precategory : + associative-mul-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + ( mul-monad-Precategory) + associative-mul-monad-Precategory = + pr1 (pr2 (pr2 T)) + + left-unit-law-mul-monad-Precategory : + left-unit-law-mul-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + ( mul-monad-Precategory) + left-unit-law-mul-monad-Precategory = + pr1 (pr2 (pr2 (pr2 T))) + + right-unit-law-mul-monad-Precategory : + right-unit-law-mul-pointed-endofunctor-Precategory C + ( pointed-endofunctor-monad-Precategory) + ( mul-monad-Precategory) + right-unit-law-mul-monad-Precategory = + pr2 (pr2 (pr2 (pr2 T))) ``` diff --git a/src/category-theory/natural-transformations-functors-precategories.lagda.md b/src/category-theory/natural-transformations-functors-precategories.lagda.md index db1057f147..2bb9c36a2c 100644 --- a/src/category-theory/natural-transformations-functors-precategories.lagda.md +++ b/src/category-theory/natural-transformations-functors-precategories.lagda.md @@ -277,12 +277,12 @@ transformation. ```agda module _ {l1 l2 l3 l4 l5 l6 : Level} - {C : Precategory l1 l2} - {D : Precategory l3 l4} - {E : Precategory l5 l6} + (C : Precategory l1 l2) + (D : Precategory l3 l4) + (E : Precategory l5 l6) where - whiskering-functor-natural-transformation-Precategory : + left-whisker-natural-transformation-Precategory : (F G : functor-Precategory C D) (H : functor-Precategory D E) (α : natural-transformation-Precategory C D F G) → @@ -291,7 +291,7 @@ module _ ( E) ( comp-functor-Precategory C D E H F) ( comp-functor-Precategory C D E H G) - whiskering-functor-natural-transformation-Precategory F G H α = + left-whisker-natural-transformation-Precategory F G H α = ( λ x → (pr1 (pr2 H)) ((pr1 α) x)) , ( λ {x} {y} → λ f → inv @@ -309,7 +309,7 @@ module _ ( (pr1 α) y) ( (pr1 (pr2 F)) f))) - whiskering-natural-transformation-functor-Precategory : + right-whisker-natural-transformation-Precategory : (F G : functor-Precategory C D) (α : natural-transformation-Precategory C D F G) (K : functor-Precategory E C) → @@ -318,7 +318,7 @@ module _ ( D) ( comp-functor-Precategory E C D F K) ( comp-functor-Precategory E C D G K) - whiskering-natural-transformation-functor-Precategory F G α K = + right-whisker-natural-transformation-Precategory F G α K = (λ x → (pr1 α) ((pr1 K) x)) , (λ f → (pr2 α) ((pr1 (pr2 K)) f)) ``` @@ -336,10 +336,11 @@ transformations obtained by whiskering. ```agda module _ {l1 l2 l3 l4 l5 l6 : Level} - {C : Precategory l1 l2} - {D : Precategory l3 l4} - {E : Precategory l5 l6} + (C : Precategory l1 l2) + (D : Precategory l3 l4) + (E : Precategory l5 l6) where + horizontal-comp-natural-transformation-Precategory : (F G : functor-Precategory C D) (H I : functor-Precategory D E) @@ -351,26 +352,10 @@ module _ ( comp-functor-Precategory C D E H F) ( comp-functor-Precategory C D E I G) horizontal-comp-natural-transformation-Precategory F G H I β α = - comp-natural-transformation-Precategory - ( C) - ( E) + comp-natural-transformation-Precategory C E ( comp-functor-Precategory C D E H F) ( comp-functor-Precategory C D E H G) ( comp-functor-Precategory C D E I G) - ( whiskering-natural-transformation-functor-Precategory - {C = D} - {D = E} - {E = C} - ( H) - ( I) - ( β) - ( G)) - ( whiskering-functor-natural-transformation-Precategory - {C = C} - {D = D} - {E = E} - ( F) - ( G) - ( H) - ( α)) + ( right-whisker-natural-transformation-Precategory D E C H I β G) + ( left-whisker-natural-transformation-Precategory C D E F G H α) ``` diff --git a/src/category-theory/pointed-endofunctors-categories.lagda.md b/src/category-theory/pointed-endofunctors-categories.lagda.md new file mode 100644 index 0000000000..f5d7468bb0 --- /dev/null +++ b/src/category-theory/pointed-endofunctors-categories.lagda.md @@ -0,0 +1,138 @@ +# Pointed endofunctors on categories + +```agda +module category-theory.pointed-endofunctors-categories where +``` + +
Imports + +```agda +open import category-theory.categories +open import category-theory.functors-categories +open import category-theory.natural-transformations-functors-categories +open import category-theory.pointed-endofunctors-precategories + +open import foundation.dependent-pair-types +open import foundation.identity-types +open import foundation.universe-levels +``` + +
+ +## Idea + +An [endofunctor](category-theory.functors-categories.md) `F : C → C` on a +[category](category-theory.categories.md) `C` is said to be +{{#concept "pointed" Disambiguation="endofunctor on a category" Agda=pointed-endofunctor-Category}} +if it comes equipped with a +[natural transformation](category-theory.natural-transformations-functors-categories.md) +`id ⇒ F` from the identity [functor](category-theory.functors-categories.md) to +`F`. + +More explicitly, a +{{#concept "pointing" Disambiguation="endofunctor on a category" Agda=pointing-endofunctor-Category}} +of an endofunctor `F : C → C` consists of a family of morphisms `η X : X → F X` +such that for each morphism `f : X → Y` in `C` the diagram + +```text + η X + X -----> F X + | | + f | | F f + ∨ ∨ + Y -----> F Y + η Y +``` + +[commutes](category-theory.commuting-squares-of-morphisms-in-precategories.md). + +## Definitions + +### The structure of a pointing on an endofunctor on a category + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) (T : functor-Category C C) + where + + pointing-endofunctor-Category : UU (l1 ⊔ l2) + pointing-endofunctor-Category = + pointing-endofunctor-Precategory (precategory-Category C) T +``` + +### Pointed endofunctors on a category + +```agda +module _ + {l1 l2 : Level} (C : Category l1 l2) + where + + pointed-endofunctor-Category : UU (l1 ⊔ l2) + pointed-endofunctor-Category = + pointed-endofunctor-Precategory (precategory-Category C) + + module _ + (F : pointed-endofunctor-Category) + where + + functor-pointed-endofunctor-Category : + functor-Category C C + functor-pointed-endofunctor-Category = + functor-pointed-endofunctor-Precategory (precategory-Category C) F + + obj-pointed-endofunctor-Category : obj-Category C → obj-Category C + obj-pointed-endofunctor-Category = + obj-pointed-endofunctor-Precategory (precategory-Category C) F + + hom-pointed-endofunctor-Category : + {X Y : obj-Category C} → + hom-Category C X Y → + hom-Category C + ( obj-pointed-endofunctor-Category X) + ( obj-pointed-endofunctor-Category Y) + hom-pointed-endofunctor-Category = + hom-pointed-endofunctor-Precategory (precategory-Category C) F + + preserves-id-pointed-endofunctor-Category : + (X : obj-Category C) → + hom-pointed-endofunctor-Category (id-hom-Category C {X}) = + id-hom-Category C + preserves-id-pointed-endofunctor-Category = + preserves-id-pointed-endofunctor-Precategory (precategory-Category C) F + + preserves-comp-pointed-endofunctor-Category : + {X Y Z : obj-Category C} + (g : hom-Category C Y Z) (f : hom-Category C X Y) → + hom-pointed-endofunctor-Category + ( comp-hom-Category C g f) = + comp-hom-Category C + ( hom-pointed-endofunctor-Category g) + ( hom-pointed-endofunctor-Category f) + preserves-comp-pointed-endofunctor-Category = + preserves-comp-pointed-endofunctor-Precategory (precategory-Category C) F + + pointing-pointed-endofunctor-Category : + natural-transformation-Category C C + ( id-functor-Category C) + ( functor-pointed-endofunctor-Category) + pointing-pointed-endofunctor-Category = + pointing-pointed-endofunctor-Precategory (precategory-Category C) F + + hom-family-pointing-pointed-endofunctor-Category : + hom-family-functor-Category C C + ( id-functor-Category C) + ( functor-pointed-endofunctor-Category) + hom-family-pointing-pointed-endofunctor-Category = + hom-family-pointing-pointed-endofunctor-Precategory + ( precategory-Category C) + ( F) + + naturality-pointing-pointed-endofunctor-Category : + is-natural-transformation-Category C C + ( id-functor-Category C) + ( functor-pointed-endofunctor-Category) + ( hom-family-pointing-pointed-endofunctor-Category) + naturality-pointing-pointed-endofunctor-Category = + naturality-pointing-pointed-endofunctor-Precategory + ( precategory-Category C) F +``` diff --git a/src/category-theory/pointed-endofunctors-precategories.lagda.md b/src/category-theory/pointed-endofunctors-precategories.lagda.md new file mode 100644 index 0000000000..2472a4dab6 --- /dev/null +++ b/src/category-theory/pointed-endofunctors-precategories.lagda.md @@ -0,0 +1,141 @@ +# Pointed endofunctors + +```agda +module category-theory.pointed-endofunctors-precategories where +``` + +
Imports + +```agda +open import category-theory.functors-precategories +open import category-theory.natural-transformations-functors-precategories +open import category-theory.precategories + +open import foundation.dependent-pair-types +open import foundation.identity-types +open import foundation.universe-levels +``` + +
+ +## Idea + +An [endofunctor](category-theory.functors-precategories.md) `F : C → C` on a +[precategory](category-theory.precategories.md) `C` is said to be +{{#concept "pointed" Disambiguation="endofunctor on a category" Agda=pointed-endofunctor-Precategory}} +if it comes equipped with a +[natural transformation](category-theory.natural-transformations-functors-precategories.md) +`id ⇒ F` from the identity [functor](category-theory.functors-precategories.md) +to `F`. + +More explicitly, a +{{#concept "pointing" Disambiguation="endofunctor on a precategory" Agda=pointing-endofunctor-Precategory}} +of an endofunctor `F : C → C` consists of a family of morphisms `η X : X → F X` +such that for each morphism `f : X → Y` in `C` the diagram + +```text + η X + X -----> F X + | | + f | | F f + ∨ ∨ + Y -----> F Y + η Y +``` + +[commutes](category-theory.commuting-squares-of-morphisms-in-precategories.md). + +## Definitions + +### The structure of a pointing on an endofunctor on a precategory + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) (T : functor-Precategory C C) + where + + pointing-endofunctor-Precategory : UU (l1 ⊔ l2) + pointing-endofunctor-Precategory = + natural-transformation-Precategory C C (id-functor-Precategory C) T +``` + +### Pointed endofunctors on a precategory + +```agda +module _ + {l1 l2 : Level} (C : Precategory l1 l2) + where + + pointed-endofunctor-Precategory : UU (l1 ⊔ l2) + pointed-endofunctor-Precategory = + Σ (functor-Precategory C C) (pointing-endofunctor-Precategory C) + + module _ + (F : pointed-endofunctor-Precategory) + where + + functor-pointed-endofunctor-Precategory : + functor-Precategory C C + functor-pointed-endofunctor-Precategory = + pr1 F + + obj-pointed-endofunctor-Precategory : obj-Precategory C → obj-Precategory C + obj-pointed-endofunctor-Precategory = + obj-functor-Precategory C C functor-pointed-endofunctor-Precategory + + hom-pointed-endofunctor-Precategory : + {X Y : obj-Precategory C} → + hom-Precategory C X Y → + hom-Precategory C + ( obj-pointed-endofunctor-Precategory X) + ( obj-pointed-endofunctor-Precategory Y) + hom-pointed-endofunctor-Precategory = + hom-functor-Precategory C C functor-pointed-endofunctor-Precategory + + preserves-id-pointed-endofunctor-Precategory : + (X : obj-Precategory C) → + hom-pointed-endofunctor-Precategory (id-hom-Precategory C {X}) = + id-hom-Precategory C + preserves-id-pointed-endofunctor-Precategory = + preserves-id-functor-Precategory C C + ( functor-pointed-endofunctor-Precategory) + + preserves-comp-pointed-endofunctor-Precategory : + {X Y Z : obj-Precategory C} + (g : hom-Precategory C Y Z) (f : hom-Precategory C X Y) → + hom-pointed-endofunctor-Precategory + ( comp-hom-Precategory C g f) = + comp-hom-Precategory C + ( hom-pointed-endofunctor-Precategory g) + ( hom-pointed-endofunctor-Precategory f) + preserves-comp-pointed-endofunctor-Precategory = + preserves-comp-functor-Precategory C C + ( functor-pointed-endofunctor-Precategory) + + pointing-pointed-endofunctor-Precategory : + natural-transformation-Precategory C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory) + pointing-pointed-endofunctor-Precategory = pr2 F + + hom-family-pointing-pointed-endofunctor-Precategory : + hom-family-functor-Precategory C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory) + hom-family-pointing-pointed-endofunctor-Precategory = + hom-family-natural-transformation-Precategory C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory) + ( pointing-pointed-endofunctor-Precategory) + + naturality-pointing-pointed-endofunctor-Precategory : + is-natural-transformation-Precategory C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory) + ( hom-family-pointing-pointed-endofunctor-Precategory) + naturality-pointing-pointed-endofunctor-Precategory = + naturality-natural-transformation-Precategory C C + ( id-functor-Precategory C) + ( functor-pointed-endofunctor-Precategory) + ( pointing-pointed-endofunctor-Precategory) +```