diff --git a/src/category-theory/functors-large-categories.lagda.md b/src/category-theory/functors-large-categories.lagda.md index eda64ca996..446bc3c40e 100644 --- a/src/category-theory/functors-large-categories.lagda.md +++ b/src/category-theory/functors-large-categories.lagda.md @@ -95,7 +95,7 @@ There is an identity functor on any large category. id-functor-Large-Category : {αC : Level → Level} {βC : Level → Level → Level} → (C : Large-Category αC βC) → - functor-Large-Category id C C + functor-Large-Category (λ l → l) C C id-functor-Large-Category C = id-functor-Large-Precategory (large-precategory-Large-Category C) ``` diff --git a/src/category-theory/functors-large-precategories.lagda.md b/src/category-theory/functors-large-precategories.lagda.md index ced47bee15..0c4d15795a 100644 --- a/src/category-theory/functors-large-precategories.lagda.md +++ b/src/category-theory/functors-large-precategories.lagda.md @@ -78,7 +78,7 @@ module _ id-functor-Large-Precategory : {αC : Level → Level} {βC : Level → Level → Level} → (C : Large-Precategory αC βC) → - functor-Large-Precategory id C C + functor-Large-Precategory (λ l → l) C C obj-functor-Large-Precategory ( id-functor-Large-Precategory C) = id @@ -152,7 +152,7 @@ module _ ( preserves-id-functor-Large-Precategory G) comp-functor-Large-Precategory : - functor-Large-Precategory (γG ∘ γF) C E + functor-Large-Precategory (λ l → γG (γF l)) C E obj-functor-Large-Precategory comp-functor-Large-Precategory = obj-comp-functor-Large-Precategory diff --git a/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md b/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md index 78637d596c..c0959f4d87 100644 --- a/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md +++ b/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md @@ -307,7 +307,7 @@ module _ ```agda group-of-units-commutative-ring-functor-Large-Precategory : - functor-Large-Precategory id + functor-Large-Precategory (λ l → l) ( Commutative-Ring-Large-Precategory) ( Ab-Large-Precategory) obj-functor-Large-Precategory diff --git a/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md b/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md index 974e3b3e61..462aa0a5f4 100644 --- a/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md +++ b/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md @@ -180,7 +180,8 @@ module _ preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H ideal-radical-ideal-hom-large-poset-Commutative-Ring : - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( radical-ideal-Commutative-Ring-Large-Poset A) ( ideal-Commutative-Ring-Large-Poset A) map-hom-Large-Preorder diff --git a/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md b/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md index b954547a45..7fc1083b49 100644 --- a/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md +++ b/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md @@ -238,7 +238,8 @@ module _ ( H)) radical-of-ideal-hom-large-poset-Commutative-Ring : - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( ideal-Commutative-Ring-Large-Poset A) ( radical-ideal-Commutative-Ring-Large-Poset A) map-hom-Large-Preorder @@ -276,7 +277,7 @@ module _ is-radical-of-ideal-radical-of-ideal-Commutative-Ring A I J radical-of-ideal-galois-connection-Commutative-Ring : - galois-connection-Large-Poset id id + galois-connection-Large-Poset (λ l → l) (λ l → l) ( ideal-Commutative-Ring-Large-Poset A) ( radical-ideal-Commutative-Ring-Large-Poset A) lower-adjoint-galois-connection-Large-Poset diff --git a/src/foundation-core/functoriality-function-types.lagda.md b/src/foundation-core/functoriality-function-types.lagda.md index 7f14cbd657..731efa774f 100644 --- a/src/foundation-core/functoriality-function-types.lagda.md +++ b/src/foundation-core/functoriality-function-types.lagda.md @@ -290,7 +290,8 @@ is-equiv-is-equiv-precomp-Prop : ({l : Level} (R : Prop l) → is-equiv (precomp f (type-Prop R))) → is-equiv f is-equiv-is-equiv-precomp-Prop P Q f H = - is-equiv-is-equiv-precomp-subuniverse id (λ l → is-prop) P Q f (λ l → H {l}) + is-equiv-is-equiv-precomp-subuniverse + ( λ l → l) (λ l → is-prop) P Q f (λ l → H {l}) is-equiv-is-equiv-precomp-Set : {l1 l2 : Level} (A : Set l1) (B : Set l2) @@ -298,7 +299,8 @@ is-equiv-is-equiv-precomp-Set : ({l : Level} (C : Set l) → is-equiv (precomp f (type-Set C))) → is-equiv f is-equiv-is-equiv-precomp-Set A B f H = - is-equiv-is-equiv-precomp-subuniverse id (λ l → is-set) A B f (λ l → H {l}) + is-equiv-is-equiv-precomp-subuniverse + ( λ l → l) (λ l → is-set) A B f (λ l → H {l}) is-equiv-is-equiv-precomp-Truncated-Type : {l1 l2 : Level} (k : 𝕋) @@ -307,7 +309,7 @@ is-equiv-is-equiv-precomp-Truncated-Type : ({l : Level} (C : Truncated-Type l k) → is-equiv (precomp f (pr1 C))) → is-equiv f is-equiv-is-equiv-precomp-Truncated-Type k A B f H = - is-equiv-is-equiv-precomp-subuniverse id (λ l → is-trunc k) A B f + is-equiv-is-equiv-precomp-subuniverse (λ l → l) (λ l → is-trunc k) A B f ( λ l → H {l}) ``` diff --git a/src/foundation/connected-components-universes.lagda.md b/src/foundation/connected-components-universes.lagda.md index b84f99d59f..52173ba92d 100644 --- a/src/foundation/connected-components-universes.lagda.md +++ b/src/foundation/connected-components-universes.lagda.md @@ -179,7 +179,7 @@ abstract is-contr-component-UU-Level-empty lzero ``` -### The connected components of universes are 0 connected +### The connected components of universes are `0`-connected ```agda abstract diff --git a/src/foundation/subuniverses.lagda.md b/src/foundation/subuniverses.lagda.md index 2cfa64f9c4..385f0a1ed1 100644 --- a/src/foundation/subuniverses.lagda.md +++ b/src/foundation/subuniverses.lagda.md @@ -143,8 +143,7 @@ module _ (α : Level → Level) (P : global-subuniverse α) where - is-in-global-subuniverse : - {l : Level} → UU l → UU (α l) + is-in-global-subuniverse : {l : Level} → UU l → UU (α l) is-in-global-subuniverse X = is-in-subuniverse (subuniverse-global-subuniverse P _) X ``` diff --git a/src/group-theory/cores-monoids.lagda.md b/src/group-theory/cores-monoids.lagda.md index 7a6109893d..6217629d86 100644 --- a/src/group-theory/cores-monoids.lagda.md +++ b/src/group-theory/cores-monoids.lagda.md @@ -226,7 +226,9 @@ module _ ```agda core-monoid-functor-Large-Precategory : - functor-Large-Precategory id Monoid-Large-Precategory Group-Large-Precategory + functor-Large-Precategory (λ l → l) + Monoid-Large-Precategory + Group-Large-Precategory obj-functor-Large-Precategory core-monoid-functor-Large-Precategory = core-Monoid diff --git a/src/group-theory/normal-closures-subgroups.lagda.md b/src/group-theory/normal-closures-subgroups.lagda.md index 86131f9e8d..99057b4147 100644 --- a/src/group-theory/normal-closures-subgroups.lagda.md +++ b/src/group-theory/normal-closures-subgroups.lagda.md @@ -252,7 +252,7 @@ module _ normal-closure-Galois-Connection : galois-connection-Large-Poset ( λ l2 → l1 ⊔ l2) - ( id) + ( λ l → l) ( Subgroup-Large-Poset G) ( Normal-Subgroup-Large-Poset G) normal-closure-Galois-Connection = diff --git a/src/group-theory/normal-cores-subgroups.lagda.md b/src/group-theory/normal-cores-subgroups.lagda.md index 5005868a47..bd3f67d570 100644 --- a/src/group-theory/normal-cores-subgroups.lagda.md +++ b/src/group-theory/normal-cores-subgroups.lagda.md @@ -224,7 +224,7 @@ module _ normal-core-subgroup-Galois-Connection : galois-connection-Large-Poset - ( id) + ( λ l → l) ( λ l2 → l1 ⊔ l2) ( Normal-Subgroup-Large-Poset G) ( Subgroup-Large-Poset G) diff --git a/src/group-theory/normal-subgroups.lagda.md b/src/group-theory/normal-subgroups.lagda.md index b701eb644f..9f808dbcc8 100644 --- a/src/group-theory/normal-subgroups.lagda.md +++ b/src/group-theory/normal-subgroups.lagda.md @@ -382,7 +382,8 @@ preserves-order-subgroup-Normal-Subgroup G N M = id subgroup-normal-subgroup-hom-Large-Poset : {l1 : Level} (G : Group l1) → - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( Normal-Subgroup-Large-Poset G) ( Subgroup-Large-Poset G) subgroup-normal-subgroup-hom-Large-Poset G = diff --git a/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md b/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md index 5ed417a8d1..a99f441305 100644 --- a/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md +++ b/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md @@ -373,7 +373,7 @@ module _ subgroup-subset-galois-connection-Group : galois-connection-Large-Poset ( λ l2 → l1 ⊔ l2) - ( id) + ( λ l → l) ( powerset-Large-Poset (type-Group G)) ( Subgroup-Large-Poset G) lower-adjoint-galois-connection-Large-Poset diff --git a/src/group-theory/subgroups.lagda.md b/src/group-theory/subgroups.lagda.md index 3d14733150..11e5b5625e 100644 --- a/src/group-theory/subgroups.lagda.md +++ b/src/group-theory/subgroups.lagda.md @@ -490,7 +490,7 @@ preserves-order-subset-Subgroup G H K = id subset-subgroup-hom-large-poset-Group : {l1 : Level} (G : Group l1) → hom-set-Large-Poset - ( id) + ( λ l → l) ( Subgroup-Large-Poset G) ( powerset-Large-Poset (type-Group G)) map-hom-Large-Preorder diff --git a/src/group-theory/substitution-functor-group-actions.lagda.md b/src/group-theory/substitution-functor-group-actions.lagda.md index 7b573d77db..be5225381f 100644 --- a/src/group-theory/substitution-functor-group-actions.lagda.md +++ b/src/group-theory/substitution-functor-group-actions.lagda.md @@ -86,7 +86,7 @@ module _ preserves-comp-subst-Abstract-Group-Action X Y Z g f = refl subst-Abstract-Group-Action : - functor-Large-Precategory id + functor-Large-Precategory (λ l → l) ( Abstract-Group-Action-Large-Precategory H) ( Abstract-Group-Action-Large-Precategory G) obj-functor-Large-Precategory subst-Abstract-Group-Action = diff --git a/src/order-theory/closure-operators-large-locales.lagda.md b/src/order-theory/closure-operators-large-locales.lagda.md index 7c20d16e68..ed34d62d05 100644 --- a/src/order-theory/closure-operators-large-locales.lagda.md +++ b/src/order-theory/closure-operators-large-locales.lagda.md @@ -63,7 +63,8 @@ module _ where hom-large-poset-closure-operator-Large-Locale : - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( large-poset-Large-Locale L) ( large-poset-Large-Locale L) hom-large-poset-closure-operator-Large-Locale = diff --git a/src/order-theory/closure-operators-large-posets.lagda.md b/src/order-theory/closure-operators-large-posets.lagda.md index 2754468f56..5c2fed2f49 100644 --- a/src/order-theory/closure-operators-large-posets.lagda.md +++ b/src/order-theory/closure-operators-large-posets.lagda.md @@ -47,7 +47,7 @@ module _ where field hom-closure-operator-Large-Poset : - hom-set-Large-Poset id P P + hom-set-Large-Poset (λ l → l) P P is-inflationary-closure-operator-Large-Poset : {l1 : Level} (x : type-Large-Poset P l1) → leq-Large-Poset P x diff --git a/src/order-theory/galois-connections-large-posets.lagda.md b/src/order-theory/galois-connections-large-posets.lagda.md index 40f3993a3f..98e4ac5e41 100644 --- a/src/order-theory/galois-connections-large-posets.lagda.md +++ b/src/order-theory/galois-connections-large-posets.lagda.md @@ -22,8 +22,8 @@ open import order-theory.order-preserving-maps-large-posets A **galois connection** between [large posets](order-theory.large-posets.md) `P` and `Q` consists of [order preserving maps](order-theory.order-preserving-maps-large-posets.md) -`f : hom-set-Large-Poset id P Q` and `hom-set-Large-Poset id Q P` such that the -adjoint relation +`f : hom-set-Large-Poset (λ l → l) P Q` and `hom-set-Large-Poset id Q P` such +that the adjoint relation ```text (f x ≤ y) ↔ (x ≤ g y) diff --git a/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md b/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md index 58ba75386a..19d1d2deaf 100644 --- a/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md +++ b/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md @@ -39,7 +39,8 @@ module _ where field hom-large-poset-hom-Large-Meet-Semilattice : - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) preserves-meets-hom-Large-Meet-Semilattice : diff --git a/src/order-theory/homomorphisms-large-suplattices.lagda.md b/src/order-theory/homomorphisms-large-suplattices.lagda.md index d13f3b7102..d68714dc51 100644 --- a/src/order-theory/homomorphisms-large-suplattices.lagda.md +++ b/src/order-theory/homomorphisms-large-suplattices.lagda.md @@ -35,7 +35,8 @@ module _ where preserves-sup-hom-Large-Poset : - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) → UUω @@ -59,7 +60,8 @@ module _ where field hom-large-poset-hom-Large-Suplattice : - hom-set-Large-Poset id + hom-set-Large-Poset + ( λ l → l) ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) preserves-sup-hom-Large-Suplattice : diff --git a/src/order-theory/nuclei-large-locales.lagda.md b/src/order-theory/nuclei-large-locales.lagda.md index f4e94f161b..b62fdad6ec 100644 --- a/src/order-theory/nuclei-large-locales.lagda.md +++ b/src/order-theory/nuclei-large-locales.lagda.md @@ -35,8 +35,8 @@ open import order-theory.least-upper-bounds-large-posets ## Idea A **nucleus** on a [large locale](order-theory.large-locales.md) `L` is an order -preserving map `j : hom-set-Large-Poset id L L` such that `j` preserves meets -and is inflationary and idempotent. +preserving map `j : hom-set-Large-Poset (λ l → l) L L` such that `j` preserves +meets and is inflationary and idempotent. ## Definitions diff --git a/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md b/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md index 4f72a0479e..794b0633cf 100644 --- a/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md +++ b/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md @@ -385,7 +385,7 @@ module _ ideal-subset-galois-connection-Ring : galois-connection-Large-Poset - ( _⊔_ l1) id + ( _⊔_ l1) (λ l → l) ( powerset-Large-Poset (type-Ring A)) ( ideal-Ring-Large-Poset A) lower-adjoint-galois-connection-Large-Poset diff --git a/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md b/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md index a506870555..d1060ba3ae 100644 --- a/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md +++ b/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md @@ -341,7 +341,7 @@ module _ left-ideal-subset-galois-connection-Ring : galois-connection-Large-Poset - ( _⊔_ l1) id + ( l1 ⊔_) (λ l → l) ( powerset-Large-Poset (type-Ring A)) ( left-ideal-Ring-Large-Poset A) lower-adjoint-galois-connection-Large-Poset diff --git a/src/ring-theory/poset-of-ideals-rings.lagda.md b/src/ring-theory/poset-of-ideals-rings.lagda.md index 8f29c36673..6fb53bd08a 100644 --- a/src/ring-theory/poset-of-ideals-rings.lagda.md +++ b/src/ring-theory/poset-of-ideals-rings.lagda.md @@ -152,7 +152,7 @@ module _ subset-ideal-hom-large-poset-Ring : hom-set-Large-Poset - ( id) + ( λ l → l) ( ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) map-hom-Large-Preorder subset-ideal-hom-large-poset-Ring = diff --git a/src/ring-theory/poset-of-left-ideals-rings.lagda.md b/src/ring-theory/poset-of-left-ideals-rings.lagda.md index 87fda7dfea..133aac4fcb 100644 --- a/src/ring-theory/poset-of-left-ideals-rings.lagda.md +++ b/src/ring-theory/poset-of-left-ideals-rings.lagda.md @@ -162,7 +162,7 @@ module _ subset-left-ideal-hom-large-poset-Ring : hom-set-Large-Poset - ( id) + ( λ l → l) ( left-ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) map-hom-Large-Preorder subset-left-ideal-hom-large-poset-Ring = diff --git a/src/ring-theory/poset-of-right-ideals-rings.lagda.md b/src/ring-theory/poset-of-right-ideals-rings.lagda.md index 7911bdafab..64d4e54ecc 100644 --- a/src/ring-theory/poset-of-right-ideals-rings.lagda.md +++ b/src/ring-theory/poset-of-right-ideals-rings.lagda.md @@ -163,7 +163,7 @@ module _ subset-right-ideal-hom-large-poset-Ring : hom-set-Large-Poset - ( id) + ( λ l → l) ( right-ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) map-hom-Large-Preorder subset-right-ideal-hom-large-poset-Ring = diff --git a/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md b/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md index 237aaa0d0a..041d821bfe 100644 --- a/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md +++ b/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md @@ -339,7 +339,7 @@ module _ right-ideal-subset-galois-connection-Ring : galois-connection-Large-Poset - ( _⊔_ l1) id + ( l1 ⊔_) (λ l → l) ( powerset-Large-Poset (type-Ring A)) ( right-ideal-Ring-Large-Poset A) lower-adjoint-galois-connection-Large-Poset diff --git a/src/species/cauchy-composition-species-of-types-in-subuniverses.lagda.md b/src/species/cauchy-composition-species-of-types-in-subuniverses.lagda.md index 3a83b52b38..4ba67acf23 100644 --- a/src/species/cauchy-composition-species-of-types-in-subuniverses.lagda.md +++ b/src/species/cauchy-composition-species-of-types-in-subuniverses.lagda.md @@ -58,7 +58,7 @@ coefficients of the composite of the Cauchy series of `S` and `T`. module _ {l1 l2 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) where type-cauchy-composition-species-subuniverse : @@ -83,13 +83,13 @@ module _ ( S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) ( T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) ( X : type-subuniverse P) → - is-in-global-subuniverse id Q + is-in-global-subuniverse (λ l → l) Q ( type-cauchy-composition-species-subuniverse S T X) module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C2 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) @@ -112,7 +112,7 @@ module _ module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C2 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) @@ -185,7 +185,7 @@ module _ ```agda module _ - {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) ( C3 : is-in-subuniverse P (raise-unit l1)) ( C4 : is-closed-under-is-contr-subuniverses P @@ -249,7 +249,7 @@ module _ module _ { l1 l2 l3 : Level} ( P : subuniverse l1 l2) - ( Q : global-subuniverse id) + ( Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) ( C2 : is-closed-under-Σ-subuniverse P) ( C3 : is-in-subuniverse P (raise-unit l1)) @@ -366,7 +366,7 @@ module _ module _ { l1 l2 l3 l4 l5 : Level} ( P : subuniverse l1 l2) - ( Q : global-subuniverse id) + ( Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) ( C2 : is-closed-under-Σ-subuniverse P) ( S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) diff --git a/src/species/cauchy-exponentials-species-of-types-in-subuniverses.lagda.md b/src/species/cauchy-exponentials-species-of-types-in-subuniverses.lagda.md index f308e753bc..79dd6514a7 100644 --- a/src/species/cauchy-exponentials-species-of-types-in-subuniverses.lagda.md +++ b/src/species/cauchy-exponentials-species-of-types-in-subuniverses.lagda.md @@ -57,7 +57,7 @@ the Cauchy exponential is also a species of types in subuniverse from `P` to ```agda module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) where type-cauchy-exponential-species-subuniverse : @@ -76,7 +76,7 @@ module _ ```agda is-closed-under-cauchy-exponential-species-subuniverse : - {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) → + {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) → UUω is-closed-under-cauchy-exponential-species-subuniverse {l1} {l2} P Q = {l3 : Level} @@ -91,7 +91,7 @@ is-closed-under-cauchy-exponential-species-subuniverse {l1} {l2} P Q = ```agda module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q) where @@ -111,7 +111,7 @@ module _ module _ {l1 l2 l3 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q) (C2 : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit) (C3 : is-closed-under-cauchy-composition-species-subuniverse P Q) @@ -136,7 +136,7 @@ module _ ```agda module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q) ( C2 : ( U : UU l1) → @@ -243,7 +243,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + ( Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q) ( C2 : is-closed-under-coproduct-species-subuniverse P Q) ( C3 : is-closed-under-cauchy-product-species-subuniverse P Q) diff --git a/src/species/cauchy-products-species-of-types-in-subuniverses.lagda.md b/src/species/cauchy-products-species-of-types-in-subuniverses.lagda.md index 03ad6b59e3..aa6eb35865 100644 --- a/src/species/cauchy-products-species-of-types-in-subuniverses.lagda.md +++ b/src/species/cauchy-products-species-of-types-in-subuniverses.lagda.md @@ -51,7 +51,8 @@ the Cauchy product is also a species of subuniverse from `P` to `Q`. ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) where type-cauchy-product-species-subuniverse : @@ -73,7 +74,7 @@ module _ ```agda is-closed-under-cauchy-product-species-subuniverse : - {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) → + {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) → UUω is-closed-under-cauchy-product-species-subuniverse {l1} {l2} P Q = {l3 l4 : Level} @@ -89,7 +90,8 @@ is-closed-under-cauchy-product-species-subuniverse {l1} {l2} P Q = ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-product-species-subuniverse P Q) where @@ -109,7 +111,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-product-species-subuniverse P Q) ( C2 : is-closed-under-coproducts-subuniverse P) where @@ -246,7 +249,7 @@ module _ module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-product-species-subuniverse P Q) (S : species-subuniverse P ( subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P ( subuniverse-global-subuniverse Q l4)) @@ -289,7 +292,7 @@ unit-cauchy-product-species-subuniverse P Q C X = is-empty (inclusion-subuniverse P X) , C X module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-product-species-subuniverse P Q) (C2 : is-in-subuniverse P (raise-empty l1)) (C3 : @@ -372,7 +375,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-cauchy-product-species-subuniverse P Q) ( C2 : is-closed-under-coproducts-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) diff --git a/src/species/cauchy-series-species-of-types-in-subuniverses.lagda.md b/src/species/cauchy-series-species-of-types-in-subuniverses.lagda.md index d296ac285f..1e26789778 100644 --- a/src/species/cauchy-series-species-of-types-in-subuniverses.lagda.md +++ b/src/species/cauchy-series-species-of-types-in-subuniverses.lagda.md @@ -79,7 +79,7 @@ module _ module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (f : diff --git a/src/species/composition-cauchy-series-species-of-types-in-subuniverses.lagda.md b/src/species/composition-cauchy-series-species-of-types-in-subuniverses.lagda.md index a8f38abd1c..d450b631b7 100644 --- a/src/species/composition-cauchy-series-species-of-types-in-subuniverses.lagda.md +++ b/src/species/composition-cauchy-series-species-of-types-in-subuniverses.lagda.md @@ -35,7 +35,7 @@ at `X` module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) @@ -63,7 +63,7 @@ module _ module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) @@ -122,7 +122,7 @@ module _ module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C2 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) diff --git a/src/species/coproducts-species-of-types-in-subuniverses.lagda.md b/src/species/coproducts-species-of-types-in-subuniverses.lagda.md index 2a1a752588..772765aa8d 100644 --- a/src/species/coproducts-species-of-types-in-subuniverses.lagda.md +++ b/src/species/coproducts-species-of-types-in-subuniverses.lagda.md @@ -34,7 +34,8 @@ stable by coproduct. ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) where type-coproduct-species-subuniverse : @@ -54,7 +55,7 @@ module _ ```agda is-closed-under-coproduct-species-subuniverse : - {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) → + {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) → UUω is-closed-under-coproduct-species-subuniverse P Q = {l3 l4 : Level} @@ -70,7 +71,8 @@ is-closed-under-coproduct-species-subuniverse P Q = ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-coproduct-species-subuniverse P Q) where @@ -89,7 +91,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + ( Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-coproduct-species-subuniverse P Q) ( S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) ( T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) diff --git a/src/species/dirichlet-exponentials-species-of-types-in-subuniverses.lagda.md b/src/species/dirichlet-exponentials-species-of-types-in-subuniverses.lagda.md index d581585b1f..8388c10511 100644 --- a/src/species/dirichlet-exponentials-species-of-types-in-subuniverses.lagda.md +++ b/src/species/dirichlet-exponentials-species-of-types-in-subuniverses.lagda.md @@ -53,7 +53,7 @@ the Dirichlet exponential is also a species of types in subuniverse from `P` to ```agda module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) where type-dirichlet-exponential-species-subuniverse : @@ -72,7 +72,7 @@ module _ ```agda is-closed-under-dirichlet-exponential-species-subuniverse : - {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) → + {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) → UUω is-closed-under-dirichlet-exponential-species-subuniverse {l1} {l2} P Q = {l3 : Level} @@ -87,7 +87,7 @@ is-closed-under-dirichlet-exponential-species-subuniverse {l1} {l2} P Q = ```agda module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-dirichlet-exponential-species-subuniverse P Q) where @@ -105,7 +105,7 @@ module _ ```agda module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-dirichlet-exponential-species-subuniverse P Q) ( C2 : ( U : UU l1) → @@ -212,7 +212,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-dirichlet-exponential-species-subuniverse P Q) ( C2 : is-closed-under-coproduct-species-subuniverse P Q) ( C3 : is-closed-under-dirichlet-product-species-subuniverse P Q) diff --git a/src/species/dirichlet-products-species-of-types-in-subuniverses.lagda.md b/src/species/dirichlet-products-species-of-types-in-subuniverses.lagda.md index 71bdd90718..ab0927bdf0 100644 --- a/src/species/dirichlet-products-species-of-types-in-subuniverses.lagda.md +++ b/src/species/dirichlet-products-species-of-types-in-subuniverses.lagda.md @@ -50,7 +50,8 @@ dirichlet product is also a species of subuniverse from `P` to `Q` ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) where type-dirichlet-product-species-subuniverse : @@ -70,7 +71,7 @@ module _ ```agda is-closed-under-dirichlet-product-species-subuniverse : - {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) → + {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) → UUω is-closed-under-dirichlet-product-species-subuniverse {l1} {l2} P Q = {l3 l4 : Level} @@ -86,7 +87,8 @@ is-closed-under-dirichlet-product-species-subuniverse {l1} {l2} P Q = ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + (Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-dirichlet-product-species-subuniverse P Q) where @@ -106,7 +108,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) + ( Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-dirichlet-product-species-subuniverse P Q) ( C2 : is-closed-under-products-subuniverse P) where @@ -274,7 +277,7 @@ module _ module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-dirichlet-product-species-subuniverse P Q) (S : species-subuniverse P ( subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P ( subuniverse-global-subuniverse Q l4)) @@ -318,7 +321,7 @@ unit-dirichlet-product-species-subuniverse P Q C X = is-contr (inclusion-subuniverse P X) , C X module _ - {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-dirichlet-product-species-subuniverse P Q) (C2 : is-in-subuniverse P (raise-unit l1)) (C3 : @@ -403,7 +406,8 @@ module _ ```agda module _ - {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) + {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) + ( Q : global-subuniverse (λ l → l)) ( C1 : is-closed-under-dirichlet-product-species-subuniverse P Q) ( C2 : is-closed-under-products-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) diff --git a/src/species/exponentials-cauchy-series-of-types-in-subuniverses.lagda.md b/src/species/exponentials-cauchy-series-of-types-in-subuniverses.lagda.md index aede799076..0977660ef0 100644 --- a/src/species/exponentials-cauchy-series-of-types-in-subuniverses.lagda.md +++ b/src/species/exponentials-cauchy-series-of-types-in-subuniverses.lagda.md @@ -58,7 +58,7 @@ module _ module _ {l1 l2 l3 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (X : UU l5) @@ -81,7 +81,7 @@ module _ module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-exponential-species-subuniverse P Q) (C2 : is-in-subuniverse (subuniverse-global-subuniverse Q lzero) unit) (C3 : is-closed-under-cauchy-composition-species-subuniverse P Q) diff --git a/src/species/products-cauchy-series-species-of-types-in-subuniverses.lagda.md b/src/species/products-cauchy-series-species-of-types-in-subuniverses.lagda.md index 8cc4b98260..a9a15785e4 100644 --- a/src/species/products-cauchy-series-species-of-types-in-subuniverses.lagda.md +++ b/src/species/products-cauchy-series-species-of-types-in-subuniverses.lagda.md @@ -35,7 +35,7 @@ The product of two Cauchy series is just the pointwise product. module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) @@ -58,7 +58,7 @@ module _ module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) @@ -99,7 +99,7 @@ module _ module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-cauchy-product-species-subuniverse P Q) (C2 : is-closed-under-coproducts-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) diff --git a/src/species/products-dirichlet-series-species-of-types-in-subuniverses.lagda.md b/src/species/products-dirichlet-series-species-of-types-in-subuniverses.lagda.md index 4225837e5e..1547e49145 100644 --- a/src/species/products-dirichlet-series-species-of-types-in-subuniverses.lagda.md +++ b/src/species/products-dirichlet-series-species-of-types-in-subuniverses.lagda.md @@ -38,7 +38,7 @@ The product of two Dirichlet series is the pointwise product. module _ {l1 l2 l3 l4 l5 l6 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-products-subuniverse P) (H : species-subuniverse-domain l5 P) (C2 : preserves-product-species-subuniverse-domain P C1 H) @@ -76,7 +76,7 @@ module _ module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-products-subuniverse P) (H : species-subuniverse-domain l5 P) (C2 : preserves-product-species-subuniverse-domain P C1 H) diff --git a/src/species/unit-cauchy-composition-species-of-types-in-subuniverses.lagda.md b/src/species/unit-cauchy-composition-species-of-types-in-subuniverses.lagda.md index 8721a6b7e3..2a11af1ba0 100644 --- a/src/species/unit-cauchy-composition-species-of-types-in-subuniverses.lagda.md +++ b/src/species/unit-cauchy-composition-species-of-types-in-subuniverses.lagda.md @@ -33,7 +33,7 @@ Cauchy composition of species of types in a subuniverse by module _ {l1 l2 : Level} (P : subuniverse l1 l2) - (Q : global-subuniverse id) + (Q : global-subuniverse (λ l → l)) (C4 : is-closed-under-is-contr-subuniverses P ( subuniverse-global-subuniverse Q l1))