diff --git a/src/commutative-algebra/isomorphisms-commutative-rings.lagda.md b/src/commutative-algebra/isomorphisms-commutative-rings.lagda.md index 9fb0bb46a5..bb5a267b00 100644 --- a/src/commutative-algebra/isomorphisms-commutative-rings.lagda.md +++ b/src/commutative-algebra/isomorphisms-commutative-rings.lagda.md @@ -353,7 +353,7 @@ module _ iso-ab-iso-ab-Commutative-Ring : iso-ab-Commutative-Ring → - type-iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B) + iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B) iso-ab-iso-ab-Commutative-Ring = iso-ab-iso-ab-Ring ( ring-Commutative-Ring A) @@ -376,7 +376,7 @@ module _ iso-ab-iso-Commutative-Ring : iso-Commutative-Ring A B → - type-iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B) + iso-Ab (ab-Commutative-Ring A) (ab-Commutative-Ring B) iso-ab-iso-Commutative-Ring = iso-ab-iso-Ring ( ring-Commutative-Ring A) diff --git a/src/commutative-algebra/transporting-commutative-ring-structure-isomorphisms-abelian-groups.lagda.md b/src/commutative-algebra/transporting-commutative-ring-structure-isomorphisms-abelian-groups.lagda.md index cecfd5ce0f..d504ae3dbc 100644 --- a/src/commutative-algebra/transporting-commutative-ring-structure-isomorphisms-abelian-groups.lagda.md +++ b/src/commutative-algebra/transporting-commutative-ring-structure-isomorphisms-abelian-groups.lagda.md @@ -50,7 +50,7 @@ transported ring structure. ```agda module _ {l1 l2 : Level} (A : Commutative-Ring l1) (B : Ab l2) - (f : type-iso-Ab (ab-Commutative-Ring A) B) + (f : iso-Ab (ab-Commutative-Ring A) B) where ring-transport-commutative-ring-structure-iso-Ab : Ring l2 diff --git a/src/finite-group-theory/finite-type-groups.lagda.md b/src/finite-group-theory/finite-type-groups.lagda.md index 9e5ac017b0..8c02609a86 100644 --- a/src/finite-group-theory/finite-type-groups.lagda.md +++ b/src/finite-group-theory/finite-type-groups.lagda.md @@ -126,7 +126,7 @@ module _ ( id))) iso-loop-group-fin-UU-Fin-Group : - type-iso-Group + iso-Group ( abstract-group-Concrete-Group (UU-Fin-Group l n)) ( loop-group-Set (raise-Set l (Fin-Set n))) pr1 iso-loop-group-fin-UU-Fin-Group = diff --git a/src/finite-group-theory/groups-of-order-2.lagda.md b/src/finite-group-theory/groups-of-order-2.lagda.md index 6d766f606e..5425077ad3 100644 --- a/src/finite-group-theory/groups-of-order-2.lagda.md +++ b/src/finite-group-theory/groups-of-order-2.lagda.md @@ -102,7 +102,7 @@ iso-Group-of-Order-2 : {l1 l2 : Level} (G : Group-of-Order-2 l1) (H : Group-of-Order-2 l2) → UU (l1 ⊔ l2) iso-Group-of-Order-2 G H = - type-iso-Group (group-Group-of-Order-2 G) (group-Group-of-Order-2 H) + iso-Group (group-Group-of-Order-2 G) (group-Group-of-Order-2 H) module _ {l : Level} (G : Group-of-Order-2 l) diff --git a/src/foundation/images-subtypes.lagda.md b/src/foundation/images-subtypes.lagda.md index 620c7d57ae..188adaa3c9 100644 --- a/src/foundation/images-subtypes.lagda.md +++ b/src/foundation/images-subtypes.lagda.md @@ -28,7 +28,7 @@ module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where - subtype-im-subtype : + im-subtype : {l3 : Level} → subtype l3 A → subtype (l1 ⊔ l2 ⊔ l3) B - subtype-im-subtype S y = subtype-im (f ∘ inclusion-subtype S) y + im-subtype S y = subtype-im (f ∘ inclusion-subtype S) y ``` diff --git a/src/group-theory.lagda.md b/src/group-theory.lagda.md index 917c06bbea..23cda3371b 100644 --- a/src/group-theory.lagda.md +++ b/src/group-theory.lagda.md @@ -25,6 +25,7 @@ open import group-theory.central-elements-groups public open import group-theory.central-elements-monoids public open import group-theory.central-elements-semigroups public open import group-theory.centralizer-subgroups public +open import group-theory.characteristic-subgroups public open import group-theory.commutative-monoids public open import group-theory.commutator-subgroups public open import group-theory.commutators-of-elements-groups public diff --git a/src/group-theory/category-of-groups.lagda.md b/src/group-theory/category-of-groups.lagda.md index 61b96665d3..b2352001ab 100644 --- a/src/group-theory/category-of-groups.lagda.md +++ b/src/group-theory/category-of-groups.lagda.md @@ -32,7 +32,7 @@ is-large-category-Group G = ( is-contr-total-iso-Group G) ( iso-eq-Group G) -eq-iso-Group : {l : Level} (G H : Group l) → type-iso-Group G H → Id G H +eq-iso-Group : {l : Level} (G H : Group l) → iso-Group G H → Id G H eq-iso-Group G H = map-inv-is-equiv (is-large-category-Group G H) Group-Large-Category : Large-Category lsuc (_⊔_) diff --git a/src/group-theory/category-of-semigroups.lagda.md b/src/group-theory/category-of-semigroups.lagda.md index 37c84d0b45..b9f7ea6756 100644 --- a/src/group-theory/category-of-semigroups.lagda.md +++ b/src/group-theory/category-of-semigroups.lagda.md @@ -41,12 +41,12 @@ is-large-category-Semigroup G = ( iso-eq-Semigroup G) extensionality-Semigroup : - {l : Level} (G H : Semigroup l) → Id G H ≃ type-iso-Semigroup G H + {l : Level} (G H : Semigroup l) → Id G H ≃ iso-Semigroup G H pr1 (extensionality-Semigroup G H) = iso-eq-Semigroup G H pr2 (extensionality-Semigroup G H) = is-large-category-Semigroup G H eq-iso-Semigroup : - {l : Level} (G H : Semigroup l) → type-iso-Semigroup G H → Id G H + {l : Level} (G H : Semigroup l) → iso-Semigroup G H → Id G H eq-iso-Semigroup G H = map-inv-is-equiv (is-large-category-Semigroup G H) Semigroup-Large-Category : Large-Category lsuc (_⊔_) diff --git a/src/group-theory/characteristic-subgroups.lagda.md b/src/group-theory/characteristic-subgroups.lagda.md new file mode 100644 index 0000000000..1730163d60 --- /dev/null +++ b/src/group-theory/characteristic-subgroups.lagda.md @@ -0,0 +1,75 @@ +# Characteristic subgroups + +```agda +module group-theory.characteristic-subgroups where +``` + +
Imports + +```agda +open import foundation.propositions +open import foundation.universe-levels + +open import group-theory.groups +open import group-theory.images-of-group-homomorphisms +open import group-theory.isomorphisms-groups +open import group-theory.subgroups +``` + +
+ +## Idea + +A **characteristic subgroup** of a [group](group-theory.groups.md) `G` is a +[subgroup](group-theory.subgroups.md) `H` of `G` such that `f H ⊆ H` for every +[isomorphism](group-theory.isomorphisms-groups.md) `f : G ≅ G`. The seemingly +stronger condition, which asserts that `f H = H` for every isomorphism +`f : G ≅ G` is equivalent. + +Note that any characteristic subgroup is +[normal](group-theory.normal-subgroups.md), since the condition of being +characteristic implies that `conjugation x H = H`. + +## Definition + +### The predicate of being a characteristic subgroup + +```agda +module _ + {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) + where + + is-characteristic-prop-Subgroup : Prop (l1 ⊔ l2) + is-characteristic-prop-Subgroup = + Π-Prop + ( iso-Group G G) + ( λ f → + leq-prop-Subgroup G + ( im-hom-Subgroup G G (hom-iso-Group G G f) H) + ( H)) +``` + +### The stronger predicate of being a characteristic subgroup + +```agda +module _ + {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) + where + + is-characteristic-prop-Subgroup' : Prop (l1 ⊔ l2) + is-characteristic-prop-Subgroup' = + Π-Prop + ( iso-Group G G) + ( λ f → + has-same-elements-prop-Subgroup G + ( im-hom-Subgroup G G (hom-iso-Group G G f) H) + ( H)) +``` + +## See also + +- [Characteristic subgroup](https://groupprops.subwiki.org/wiki/Characteristic_subgroup) + at Groupprops +- [Characteristic subgroup](https://www.wikidata.org/entity/Q747027) at Wikidata +- [Characteristic subgroup](https://en.wikipedia.org/wiki/Characteristic_subgroup) + at Wikipedia diff --git a/src/group-theory/conjugation.lagda.md b/src/group-theory/conjugation.lagda.md index f5e6d396e0..c6a6e28e3b 100644 --- a/src/group-theory/conjugation.lagda.md +++ b/src/group-theory/conjugation.lagda.md @@ -385,7 +385,7 @@ module _ pr1 (conjugation-equiv-Group x) = equiv-conjugation-Group G x pr2 (conjugation-equiv-Group x) = distributive-conjugation-mul-Group G x - conjugation-iso-Group : type-Group G → type-iso-Group G G + conjugation-iso-Group : type-Group G → iso-Group G G conjugation-iso-Group x = iso-equiv-Group G G (conjugation-equiv-Group x) preserves-integer-powers-conjugation-Group : diff --git a/src/group-theory/epimorphisms-groups.lagda.md b/src/group-theory/epimorphisms-groups.lagda.md index 57ea1a5389..328edec5c1 100644 --- a/src/group-theory/epimorphisms-groups.lagda.md +++ b/src/group-theory/epimorphisms-groups.lagda.md @@ -60,7 +60,7 @@ module _ ```agda module _ {l1 l2 : Level} (l3 : Level) (G : Group l1) - (H : Group l2) (f : type-iso-Group G H) + (H : Group l2) (f : iso-Group G H) where is-epi-iso-Group : diff --git a/src/group-theory/full-subgroups.lagda.md b/src/group-theory/full-subgroups.lagda.md index 5d37b0e097..09f1268b8e 100644 --- a/src/group-theory/full-subgroups.lagda.md +++ b/src/group-theory/full-subgroups.lagda.md @@ -111,12 +111,12 @@ module _ pr2 equiv-group-inclusion-full-Subgroup = preserves-mul-inclusion-full-Subgroup - iso-full-Subgroup : type-iso-Group group-full-Subgroup G + iso-full-Subgroup : iso-Group group-full-Subgroup G iso-full-Subgroup = iso-equiv-Group group-full-Subgroup G equiv-group-inclusion-full-Subgroup inv-iso-full-Subgroup : - type-iso-Group G group-full-Subgroup + iso-Group G group-full-Subgroup inv-iso-full-Subgroup = inv-iso-Group group-full-Subgroup G iso-full-Subgroup ``` @@ -141,7 +141,7 @@ module _ ( is-equiv-inclusion-is-full-subtype (subset-Subgroup G H) K) iso-inclusion-is-full-Subgroup : - is-full-Subgroup G H → type-iso-Group (group-Subgroup G H) G + is-full-Subgroup G H → iso-Group (group-Subgroup G H) G pr1 (iso-inclusion-is-full-Subgroup K) = hom-inclusion-Subgroup G H pr2 (iso-inclusion-is-full-Subgroup K) = is-iso-inclusion-is-full-Subgroup K diff --git a/src/group-theory/generating-elements-groups.lagda.md b/src/group-theory/generating-elements-groups.lagda.md index a2ed29ade4..404159da0b 100644 --- a/src/group-theory/generating-elements-groups.lagda.md +++ b/src/group-theory/generating-elements-groups.lagda.md @@ -607,7 +607,7 @@ module _ ( is-equiv-ev-element-Group-With-Generating-Element) iso-ev-element-Group-With-Generating-Element : - type-iso-Ab + iso-Ab ( ab-hom-Ab ( abelian-group-Group-With-Generating-Element G) ( abelian-group-Group-With-Generating-Element G)) diff --git a/src/group-theory/images-of-group-homomorphisms.lagda.md b/src/group-theory/images-of-group-homomorphisms.lagda.md index a10218a290..fbc809b7a3 100644 --- a/src/group-theory/images-of-group-homomorphisms.lagda.md +++ b/src/group-theory/images-of-group-homomorphisms.lagda.md @@ -10,6 +10,7 @@ module group-theory.images-of-group-homomorphisms where open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.images +open import foundation.images-subtypes open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.universal-property-image @@ -128,6 +129,58 @@ module _ backward-implication (is-image-image-hom-Group K) ``` +### The image of a subgroup of a group homomorphism + +```agda +module _ + {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) + (K : Subgroup l3 G) + where + + subset-im-hom-Subgroup : subset-Group (l1 ⊔ l2 ⊔ l3) H + subset-im-hom-Subgroup = + im-subtype (map-hom-Group G H f) (subset-Subgroup G K) + + contains-unit-im-hom-Subgroup : + contains-unit-subset-Group H subset-im-hom-Subgroup + contains-unit-im-hom-Subgroup = + unit-trunc-Prop (unit-Subgroup G K , preserves-unit-hom-Group G H f) + + abstract + is-closed-under-multiplication-im-hom-Subgroup : + is-closed-under-multiplication-subset-Group H subset-im-hom-Subgroup + is-closed-under-multiplication-im-hom-Subgroup x y u v = + apply-twice-universal-property-trunc-Prop u v + ( subset-im-hom-Subgroup (mul-Group H x y)) + ( λ where + ((x' , k) , refl) ((y' , l) , refl) → + unit-trunc-Prop + ( ( mul-Subgroup G K (x' , k) (y' , l)) , + ( preserves-mul-hom-Group G H f x' y'))) + + abstract + is-closed-under-inverses-im-hom-Subgroup : + is-closed-under-inverses-subset-Group H subset-im-hom-Subgroup + is-closed-under-inverses-im-hom-Subgroup x u = + apply-universal-property-trunc-Prop u + ( subset-im-hom-Subgroup (inv-Group H x)) + ( λ where + ((x' , k) , refl) → + unit-trunc-Prop + ( ( inv-Subgroup G K (x' , k)) , + ( preserves-inv-hom-Group G H f x'))) + + im-hom-Subgroup : Subgroup (l1 ⊔ l2 ⊔ l3) H + pr1 im-hom-Subgroup = + subset-im-hom-Subgroup + pr1 (pr2 im-hom-Subgroup) = + contains-unit-im-hom-Subgroup + pr1 (pr2 (pr2 im-hom-Subgroup)) = + is-closed-under-multiplication-im-hom-Subgroup + pr2 (pr2 (pr2 im-hom-Subgroup)) = + is-closed-under-inverses-im-hom-Subgroup +``` + ## Properties ### A group homomorphism is surjective if and only if its image is the full subgroup diff --git a/src/group-theory/isomorphisms-abelian-groups.lagda.md b/src/group-theory/isomorphisms-abelian-groups.lagda.md index c9cb16f0ff..ebcb01fab1 100644 --- a/src/group-theory/isomorphisms-abelian-groups.lagda.md +++ b/src/group-theory/isomorphisms-abelian-groups.lagda.md @@ -110,56 +110,56 @@ module _ {l1 l2 : Level} (A : Ab l1) (B : Ab l2) where - type-iso-Ab : UU (l1 ⊔ l2) - type-iso-Ab = type-iso-Group (group-Ab A) (group-Ab B) + iso-Ab : UU (l1 ⊔ l2) + iso-Ab = iso-Group (group-Ab A) (group-Ab B) - hom-iso-Ab : type-iso-Ab → hom-Ab A B + hom-iso-Ab : iso-Ab → hom-Ab A B hom-iso-Ab = hom-iso-Group (group-Ab A) (group-Ab B) - map-iso-Ab : type-iso-Ab → type-Ab A → type-Ab B + map-iso-Ab : iso-Ab → type-Ab A → type-Ab B map-iso-Ab = map-iso-Group (group-Ab A) (group-Ab B) preserves-add-iso-Ab : - (f : type-iso-Ab) (x y : type-Ab A) → + (f : iso-Ab) (x y : type-Ab A) → map-iso-Ab f (add-Ab A x y) = add-Ab B (map-iso-Ab f x) (map-iso-Ab f y) preserves-add-iso-Ab = preserves-mul-iso-Group (group-Ab A) (group-Ab B) - is-iso-iso-Ab : (f : type-iso-Ab) → is-iso-Ab A B (hom-iso-Ab f) + is-iso-iso-Ab : (f : iso-Ab) → is-iso-Ab A B (hom-iso-Ab f) is-iso-iso-Ab = is-iso-iso-Group (group-Ab A) (group-Ab B) - hom-inv-iso-Ab : type-iso-Ab → hom-Ab B A + hom-inv-iso-Ab : iso-Ab → hom-Ab B A hom-inv-iso-Ab = hom-inv-iso-Group (group-Ab A) (group-Ab B) - map-inv-iso-Ab : type-iso-Ab → type-Ab B → type-Ab A + map-inv-iso-Ab : iso-Ab → type-Ab B → type-Ab A map-inv-iso-Ab = map-inv-iso-Group (group-Ab A) (group-Ab B) preserves-add-inv-iso-Ab : - (f : type-iso-Ab) (x y : type-Ab B) → + (f : iso-Ab) (x y : type-Ab B) → map-inv-iso-Ab f (add-Ab B x y) = add-Ab A (map-inv-iso-Ab f x) (map-inv-iso-Ab f y) preserves-add-inv-iso-Ab = preserves-mul-inv-iso-Group (group-Ab A) (group-Ab B) is-section-hom-inv-iso-Ab : - (f : type-iso-Ab) → + (f : iso-Ab) → comp-hom-Ab B A B (hom-iso-Ab f) (hom-inv-iso-Ab f) = id-hom-Ab B is-section-hom-inv-iso-Ab = is-section-hom-inv-iso-Group (group-Ab A) (group-Ab B) is-section-map-inv-iso-Ab : - (f : type-iso-Ab) → (map-iso-Ab f ∘ map-inv-iso-Ab f) ~ id + (f : iso-Ab) → (map-iso-Ab f ∘ map-inv-iso-Ab f) ~ id is-section-map-inv-iso-Ab = is-section-map-inv-iso-Group (group-Ab A) (group-Ab B) is-retraction-hom-inv-iso-Ab : - (f : type-iso-Ab) → + (f : iso-Ab) → comp-hom-Ab A B A (hom-inv-iso-Ab f) (hom-iso-Ab f) = id-hom-Ab A is-retraction-hom-inv-iso-Ab = is-retraction-hom-inv-iso-Group (group-Ab A) (group-Ab B) is-retraction-map-inv-iso-Ab : - (f : type-iso-Ab) → (map-inv-iso-Ab f ∘ map-iso-Ab f) ~ id + (f : iso-Ab) → (map-inv-iso-Ab f ∘ map-iso-Ab f) ~ id is-retraction-map-inv-iso-Ab = is-retraction-map-inv-iso-Group (group-Ab A) (group-Ab B) ``` @@ -168,7 +168,7 @@ module _ ```agda id-iso-Ab : - {l : Level} (A : Ab l) → type-iso-Ab A A + {l : Level} (A : Ab l) → iso-Ab A A id-iso-Ab A = id-iso-Group (group-Ab A) ``` @@ -178,19 +178,19 @@ id-iso-Ab A = id-iso-Group (group-Ab A) ```agda iso-eq-Ab : - {l : Level} (A B : Ab l) → Id A B → type-iso-Ab A B + {l : Level} (A B : Ab l) → Id A B → iso-Ab A B iso-eq-Ab A .A refl = id-iso-Ab A abstract equiv-iso-eq-Ab' : - {l : Level} (A B : Ab l) → Id A B ≃ type-iso-Ab A B + {l : Level} (A B : Ab l) → Id A B ≃ iso-Ab A B equiv-iso-eq-Ab' A B = ( extensionality-Group' (group-Ab A) (group-Ab B)) ∘e ( equiv-ap-inclusion-subtype is-abelian-group-Prop {A} {B}) abstract is-contr-total-iso-Ab : - {l : Level} (A : Ab l) → is-contr (Σ (Ab l) (type-iso-Ab A)) + {l : Level} (A : Ab l) → is-contr (Σ (Ab l) (iso-Ab A)) is-contr-total-iso-Ab {l} A = is-contr-equiv' ( Σ (Ab l) (Id A)) @@ -205,7 +205,7 @@ is-equiv-iso-eq-Ab A = ( iso-eq-Ab A) eq-iso-Ab : - {l : Level} (A B : Ab l) → type-iso-Ab A B → Id A B + {l : Level} (A B : Ab l) → iso-Ab A B → Id A B eq-iso-Ab A B = map-inv-is-equiv (is-equiv-iso-eq-Ab A B) ``` @@ -224,9 +224,9 @@ module _ (f : hom-Ab A B) → is-iso-Ab A B f → is-equiv-hom-Ab A B f is-equiv-is-iso-Ab = is-equiv-is-iso-Group (group-Ab A) (group-Ab B) - equiv-iso-equiv-Ab : equiv-Ab A B ≃ type-iso-Ab A B + equiv-iso-equiv-Ab : equiv-Ab A B ≃ iso-Ab A B equiv-iso-equiv-Ab = equiv-iso-equiv-Group (group-Ab A) (group-Ab B) - iso-equiv-Ab : equiv-Ab A B → type-iso-Ab A B + iso-equiv-Ab : equiv-Ab A B → iso-Ab A B iso-equiv-Ab = iso-equiv-Group (group-Ab A) (group-Ab B) ``` diff --git a/src/group-theory/isomorphisms-group-actions.lagda.md b/src/group-theory/isomorphisms-group-actions.lagda.md index 6348da769b..c91df924be 100644 --- a/src/group-theory/isomorphisms-group-actions.lagda.md +++ b/src/group-theory/isomorphisms-group-actions.lagda.md @@ -40,21 +40,21 @@ module _ is-iso-Abstract-Group-Action = is-iso-Large-Precategory C {X = X} {Y = Y} - type-iso-Abstract-Group-Action : UU (l1 ⊔ l2 ⊔ l3) - type-iso-Abstract-Group-Action = iso-Large-Precategory C X Y + iso-Abstract-Group-Action : UU (l1 ⊔ l2 ⊔ l3) + iso-Abstract-Group-Action = iso-Large-Precategory C X Y hom-iso-Abstract-Group-Action : - type-iso-Abstract-Group-Action → hom-Abstract-Group-Action G X Y + iso-Abstract-Group-Action → hom-Abstract-Group-Action G X Y hom-iso-Abstract-Group-Action = hom-iso-Large-Precategory C {X = X} {Y = Y} map-iso-Abstract-Group-Action : - type-iso-Abstract-Group-Action → + iso-Abstract-Group-Action → type-Abstract-Group-Action G X → type-Abstract-Group-Action G Y map-iso-Abstract-Group-Action f = map-hom-Abstract-Group-Action G X Y (hom-iso-Abstract-Group-Action f) coherence-square-iso-Abstract-Group-Action : - (f : type-iso-Abstract-Group-Action) (g : type-Group G) → + (f : iso-Abstract-Group-Action) (g : type-Group G) → coherence-square-maps ( map-iso-Abstract-Group-Action f) ( mul-Abstract-Group-Action G X g) @@ -65,19 +65,19 @@ module _ ( hom-iso-Abstract-Group-Action f) hom-inv-iso-Abstract-Group-Action : - type-iso-Abstract-Group-Action → hom-Abstract-Group-Action G Y X + iso-Abstract-Group-Action → hom-Abstract-Group-Action G Y X hom-inv-iso-Abstract-Group-Action = hom-inv-iso-Large-Precategory C {X = X} {Y = Y} map-hom-inv-iso-Abstract-Group-Action : - type-iso-Abstract-Group-Action → + iso-Abstract-Group-Action → type-Abstract-Group-Action G Y → type-Abstract-Group-Action G X map-hom-inv-iso-Abstract-Group-Action f = map-hom-Abstract-Group-Action G Y X ( hom-inv-iso-Abstract-Group-Action f) is-section-hom-inv-iso-Abstract-Group-Action : - (f : type-iso-Abstract-Group-Action) → + (f : iso-Abstract-Group-Action) → Id ( comp-hom-Abstract-Group-Action G Y X Y ( hom-iso-Abstract-Group-Action f) @@ -87,7 +87,7 @@ module _ is-section-hom-inv-iso-Large-Precategory C {X = X} {Y = Y} is-retraction-hom-inv-iso-Abstract-Group-Action : - (f : type-iso-Abstract-Group-Action) → + (f : iso-Abstract-Group-Action) → Id ( comp-hom-Abstract-Group-Action G X Y X ( hom-inv-iso-Abstract-Group-Action f) @@ -97,13 +97,13 @@ module _ is-retraction-hom-inv-iso-Large-Precategory C {X = X} {Y = Y} is-iso-iso-Abstract-Group-Action : - (f : type-iso-Abstract-Group-Action) → + (f : iso-Abstract-Group-Action) → is-iso-Abstract-Group-Action (hom-iso-Abstract-Group-Action f) is-iso-iso-Abstract-Group-Action = is-iso-iso-Large-Precategory C {X = X} {Y = Y} equiv-iso-Abstract-Group-Action : - type-iso-Abstract-Group-Action → equiv-Abstract-Group-Action G X Y + iso-Abstract-Group-Action → equiv-Abstract-Group-Action G X Y pr1 (pr1 (equiv-iso-Abstract-Group-Action f)) = map-iso-Abstract-Group-Action f pr2 (pr1 (equiv-iso-Abstract-Group-Action f)) = diff --git a/src/group-theory/isomorphisms-groups.lagda.md b/src/group-theory/isomorphisms-groups.lagda.md index 5a3a7e7496..00a4a30abb 100644 --- a/src/group-theory/isomorphisms-groups.lagda.md +++ b/src/group-theory/isomorphisms-groups.lagda.md @@ -122,57 +122,57 @@ module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) where - type-iso-Group : UU (l1 ⊔ l2) - type-iso-Group = type-iso-Semigroup (semigroup-Group G) (semigroup-Group H) + iso-Group : UU (l1 ⊔ l2) + iso-Group = iso-Semigroup (semigroup-Group G) (semigroup-Group H) - hom-iso-Group : type-iso-Group → hom-Group G H + hom-iso-Group : iso-Group → hom-Group G H hom-iso-Group = hom-iso-Semigroup (semigroup-Group G) (semigroup-Group H) - map-iso-Group : type-iso-Group → type-Group G → type-Group H + map-iso-Group : iso-Group → type-Group G → type-Group H map-iso-Group = map-iso-Semigroup (semigroup-Group G) (semigroup-Group H) preserves-mul-iso-Group : - (f : type-iso-Group) (x y : type-Group G) → + (f : iso-Group) (x y : type-Group G) → map-iso-Group f (mul-Group G x y) = mul-Group H (map-iso-Group f x) (map-iso-Group f y) preserves-mul-iso-Group = preserves-mul-iso-Semigroup (semigroup-Group G) (semigroup-Group H) is-iso-iso-Group : - (f : type-iso-Group) → is-iso-Group G H (hom-iso-Group f) + (f : iso-Group) → is-iso-Group G H (hom-iso-Group f) is-iso-iso-Group = is-iso-iso-Semigroup (semigroup-Group G) (semigroup-Group H) - hom-inv-iso-Group : type-iso-Group → hom-Group H G + hom-inv-iso-Group : iso-Group → hom-Group H G hom-inv-iso-Group = hom-inv-iso-Semigroup (semigroup-Group G) (semigroup-Group H) - map-inv-iso-Group : type-iso-Group → type-Group H → type-Group G + map-inv-iso-Group : iso-Group → type-Group H → type-Group G map-inv-iso-Group = map-inv-iso-Semigroup (semigroup-Group G) (semigroup-Group H) preserves-mul-inv-iso-Group : - (f : type-iso-Group) (x y : type-Group H) → + (f : iso-Group) (x y : type-Group H) → map-inv-iso-Group f (mul-Group H x y) = mul-Group G (map-inv-iso-Group f x) (map-inv-iso-Group f y) preserves-mul-inv-iso-Group = preserves-mul-inv-iso-Semigroup (semigroup-Group G) (semigroup-Group H) is-section-hom-inv-iso-Group : - (f : type-iso-Group) → + (f : iso-Group) → comp-hom-Group H G H (hom-iso-Group f) (hom-inv-iso-Group f) = id-hom-Group H is-section-hom-inv-iso-Group = is-section-hom-inv-iso-Semigroup (semigroup-Group G) (semigroup-Group H) is-section-map-inv-iso-Group : - (f : type-iso-Group) → + (f : iso-Group) → ( map-iso-Group f ∘ map-inv-iso-Group f) ~ id is-section-map-inv-iso-Group = is-section-map-inv-iso-Semigroup (semigroup-Group G) (semigroup-Group H) is-retraction-hom-inv-iso-Group : - (f : type-iso-Group) → + (f : iso-Group) → comp-hom-Group G H G (hom-inv-iso-Group f) (hom-iso-Group f) = id-hom-Group G is-retraction-hom-inv-iso-Group = @@ -181,7 +181,7 @@ module _ ( semigroup-Group H) is-retraction-map-inv-iso-Group : - (f : type-iso-Group) → + (f : iso-Group) → ( map-inv-iso-Group f ∘ map-iso-Group f) ~ id is-retraction-map-inv-iso-Group = is-retraction-map-inv-iso-Semigroup @@ -198,11 +198,11 @@ module _ is-equiv-is-iso-Group = is-equiv-is-iso-Semigroup (semigroup-Group G) (semigroup-Group H) - equiv-iso-equiv-Group : equiv-Group G H ≃ type-iso-Group + equiv-iso-equiv-Group : equiv-Group G H ≃ iso-Group equiv-iso-equiv-Group = equiv-iso-equiv-Semigroup (semigroup-Group G) (semigroup-Group H) - iso-equiv-Group : equiv-Group G H → type-iso-Group + iso-equiv-Group : equiv-Group G H → iso-Group iso-equiv-Group = map-equiv equiv-iso-equiv-Group ``` @@ -213,7 +213,7 @@ module _ {l : Level} (G : Group l) where - id-iso-Group : type-iso-Group G G + id-iso-Group : iso-Group G G id-iso-Group = id-iso-Large-Precategory Group-Large-Precategory {X = G} ``` @@ -226,11 +226,11 @@ module _ {l : Level} (G : Group l) where - iso-eq-Group : (H : Group l) → Id G H → type-iso-Group G H + iso-eq-Group : (H : Group l) → Id G H → iso-Group G H iso-eq-Group = iso-eq-Large-Precategory Group-Large-Precategory G abstract - extensionality-Group' : (H : Group l) → Id G H ≃ type-iso-Group G H + extensionality-Group' : (H : Group l) → Id G H ≃ iso-Group G H extensionality-Group' H = ( extensionality-Semigroup ( semigroup-Group G) @@ -238,7 +238,7 @@ module _ ( equiv-ap-inclusion-subtype is-group-Prop {s = G} {t = H}) abstract - is-contr-total-iso-Group : is-contr (Σ (Group l) (type-iso-Group G)) + is-contr-total-iso-Group : is-contr (Σ (Group l) (iso-Group G)) is-contr-total-iso-Group = is-contr-equiv' ( Σ (Group l) (Id G)) @@ -254,7 +254,7 @@ module _ where comp-iso-Group : - type-iso-Group H K → type-iso-Group G H → type-iso-Group G K + iso-Group H K → iso-Group G H → iso-Group G K comp-iso-Group = comp-iso-Large-Precategory Group-Large-Precategory {X = G} {Y = H} {Z = K} ``` @@ -266,7 +266,7 @@ module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) where - inv-iso-Group : type-iso-Group G H → type-iso-Group H G + inv-iso-Group : iso-Group G H → iso-Group H G inv-iso-Group = inv-iso-Large-Precategory Group-Large-Precategory {X = G} {Y = H} ``` diff --git a/src/group-theory/isomorphisms-semigroups.lagda.md b/src/group-theory/isomorphisms-semigroups.lagda.md index 2192522f6d..fc84c6d66a 100644 --- a/src/group-theory/isomorphisms-semigroups.lagda.md +++ b/src/group-theory/isomorphisms-semigroups.lagda.md @@ -112,46 +112,46 @@ module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) where - type-iso-Semigroup : UU (l1 ⊔ l2) - type-iso-Semigroup = iso-Large-Precategory Semigroup-Large-Precategory G H + iso-Semigroup : UU (l1 ⊔ l2) + iso-Semigroup = iso-Large-Precategory Semigroup-Large-Precategory G H - hom-iso-Semigroup : type-iso-Semigroup → hom-Semigroup G H + hom-iso-Semigroup : iso-Semigroup → hom-Semigroup G H hom-iso-Semigroup = hom-iso-Large-Precategory Semigroup-Large-Precategory {X = G} {Y = H} - map-iso-Semigroup : type-iso-Semigroup → type-Semigroup G → type-Semigroup H + map-iso-Semigroup : iso-Semigroup → type-Semigroup G → type-Semigroup H map-iso-Semigroup f = map-hom-Semigroup G H (hom-iso-Semigroup f) preserves-mul-iso-Semigroup : - (f : type-iso-Semigroup) (x y : type-Semigroup G) → + (f : iso-Semigroup) (x y : type-Semigroup G) → map-iso-Semigroup f (mul-Semigroup G x y) = mul-Semigroup H (map-iso-Semigroup f x) (map-iso-Semigroup f y) preserves-mul-iso-Semigroup f = preserves-mul-hom-Semigroup G H (hom-iso-Semigroup f) is-iso-iso-Semigroup : - (f : type-iso-Semigroup) → is-iso-Semigroup G H (hom-iso-Semigroup f) + (f : iso-Semigroup) → is-iso-Semigroup G H (hom-iso-Semigroup f) is-iso-iso-Semigroup = is-iso-iso-Large-Precategory Semigroup-Large-Precategory {X = G} {Y = H} - hom-inv-iso-Semigroup : type-iso-Semigroup → hom-Semigroup H G + hom-inv-iso-Semigroup : iso-Semigroup → hom-Semigroup H G hom-inv-iso-Semigroup = hom-inv-iso-Large-Precategory Semigroup-Large-Precategory {X = G} {Y = H} map-inv-iso-Semigroup : - type-iso-Semigroup → type-Semigroup H → type-Semigroup G + iso-Semigroup → type-Semigroup H → type-Semigroup G map-inv-iso-Semigroup f = map-hom-Semigroup H G (hom-inv-iso-Semigroup f) preserves-mul-inv-iso-Semigroup : - (f : type-iso-Semigroup) (x y : type-Semigroup H) → + (f : iso-Semigroup) (x y : type-Semigroup H) → map-inv-iso-Semigroup f (mul-Semigroup H x y) = mul-Semigroup G (map-inv-iso-Semigroup f x) (map-inv-iso-Semigroup f y) preserves-mul-inv-iso-Semigroup f = preserves-mul-hom-Semigroup H G (hom-inv-iso-Semigroup f) is-section-hom-inv-iso-Semigroup : - (f : type-iso-Semigroup) → + (f : iso-Semigroup) → comp-hom-Semigroup H G H (hom-iso-Semigroup f) (hom-inv-iso-Semigroup f) = id-hom-Semigroup H is-section-hom-inv-iso-Semigroup = @@ -161,7 +161,7 @@ module _ { Y = H} is-section-map-inv-iso-Semigroup : - (f : type-iso-Semigroup) → + (f : iso-Semigroup) → (map-iso-Semigroup f ∘ map-inv-iso-Semigroup f) ~ id is-section-map-inv-iso-Semigroup f = htpy-eq-hom-Semigroup H H @@ -172,7 +172,7 @@ module _ ( is-section-hom-inv-iso-Semigroup f) is-retraction-hom-inv-iso-Semigroup : - (f : type-iso-Semigroup) → + (f : iso-Semigroup) → comp-hom-Semigroup G H G (hom-inv-iso-Semigroup f) (hom-iso-Semigroup f) = id-hom-Semigroup G is-retraction-hom-inv-iso-Semigroup = @@ -182,7 +182,7 @@ module _ { Y = H} is-retraction-map-inv-iso-Semigroup : - (f : type-iso-Semigroup) → + (f : iso-Semigroup) → ( map-inv-iso-Semigroup f ∘ map-iso-Semigroup f) ~ id is-retraction-map-inv-iso-Semigroup f = htpy-eq-hom-Semigroup G G @@ -281,7 +281,7 @@ module _ ( htpy-eq (ap pr1 S)) ( htpy-eq (ap pr1 R)) - equiv-iso-equiv-Semigroup : equiv-Semigroup G H ≃ type-iso-Semigroup G H + equiv-iso-equiv-Semigroup : equiv-Semigroup G H ≃ iso-Semigroup G H equiv-iso-equiv-Semigroup = ( equiv-type-subtype ( λ f → is-property-is-equiv (map-hom-Semigroup G H f)) @@ -299,17 +299,17 @@ module _ where is-contr-total-iso-Semigroup : - is-contr (Σ (Semigroup l) (type-iso-Semigroup G)) + is-contr (Σ (Semigroup l) (iso-Semigroup G)) is-contr-total-iso-Semigroup = is-contr-equiv' ( Σ (Semigroup l) (equiv-Semigroup G)) ( equiv-tot (equiv-iso-equiv-Semigroup G)) ( is-contr-total-equiv-Semigroup G) - id-iso-Semigroup : type-iso-Semigroup G G + id-iso-Semigroup : iso-Semigroup G G id-iso-Semigroup = id-iso-Large-Precategory Semigroup-Large-Precategory {X = G} - iso-eq-Semigroup : (H : Semigroup l) → Id G H → type-iso-Semigroup G H + iso-eq-Semigroup : (H : Semigroup l) → Id G H → iso-Semigroup G H iso-eq-Semigroup = iso-eq-Large-Precategory Semigroup-Large-Precategory G ``` diff --git a/src/group-theory/loop-groups-sets.lagda.md b/src/group-theory/loop-groups-sets.lagda.md index 974547155f..9273085a5e 100644 --- a/src/group-theory/loop-groups-sets.lagda.md +++ b/src/group-theory/loop-groups-sets.lagda.md @@ -185,7 +185,7 @@ module _ ( id))) iso-symmetric-group-loop-group-Set : - type-iso-Group (loop-group-Set X) (symmetric-Group X) + iso-Group (loop-group-Set X) (symmetric-Group X) pr1 iso-symmetric-group-loop-group-Set = hom-symmetric-group-loop-group-Set pr1 (pr2 iso-symmetric-group-loop-group-Set) = hom-inv-symmetric-group-loop-group-Set @@ -325,7 +325,7 @@ module _ ( id))) iso-abstract-automorphism-group-loop-group-Set : - type-iso-Group + iso-Group ( loop-group-Set X) ( abstract-group-Concrete-Group ( Automorphism-Group (Set-1-Type l) X)) @@ -347,7 +347,7 @@ module _ where iso-loop-group-equiv-Set : - type-iso-Group + iso-Group ( loop-group-Set X) ( loop-group-Set Y) iso-loop-group-equiv-Set = diff --git a/src/group-theory/monomorphisms-groups.lagda.md b/src/group-theory/monomorphisms-groups.lagda.md index c7eb63ce43..3a7fdfb7fe 100644 --- a/src/group-theory/monomorphisms-groups.lagda.md +++ b/src/group-theory/monomorphisms-groups.lagda.md @@ -53,7 +53,7 @@ module _ ```agda module _ {l1 l2 : Level} (l3 : Level) (G : Group l1) - (H : Group l2) (f : type-iso-Group G H) + (H : Group l2) (f : iso-Group G H) where is-mono-iso-Group : diff --git a/src/group-theory/opposite-groups.lagda.md b/src/group-theory/opposite-groups.lagda.md index 405a000dc9..0acbf3b60b 100644 --- a/src/group-theory/opposite-groups.lagda.md +++ b/src/group-theory/opposite-groups.lagda.md @@ -50,6 +50,6 @@ module _ pr1 equiv-inv-Group = equiv-equiv-inv-Group G pr2 equiv-inv-Group = distributive-inv-mul-Group G - iso-inv-Group : type-iso-Group G (op-Group G) + iso-inv-Group : iso-Group G (op-Group G) iso-inv-Group = iso-equiv-Group G (op-Group G) equiv-inv-Group ``` diff --git a/src/group-theory/symmetric-groups.lagda.md b/src/group-theory/symmetric-groups.lagda.md index 121b6e2614..62c371ed47 100644 --- a/src/group-theory/symmetric-groups.lagda.md +++ b/src/group-theory/symmetric-groups.lagda.md @@ -149,7 +149,7 @@ module _ ( id))) iso-symmetric-group-equiv-Set : - type-iso-Group (symmetric-Group X) (symmetric-Group Y) + iso-Group (symmetric-Group X) (symmetric-Group Y) pr1 iso-symmetric-group-equiv-Set = hom-symmetric-group-equiv-Set pr1 (pr2 iso-symmetric-group-equiv-Set) = hom-inv-symmetric-group-equiv-Set pr1 (pr2 (pr2 iso-symmetric-group-equiv-Set)) = @@ -200,7 +200,7 @@ module _ preserves-mul-compute-symmetric-Concrete-Group compute-symmetric-Concrete-Group' : - type-iso-Group + iso-Group ( op-abstract-group-Concrete-Group (symmetric-Concrete-Group A)) ( symmetric-Group A) compute-symmetric-Concrete-Group' = @@ -210,7 +210,7 @@ module _ ( equiv-group-compute-symmetric-Concrete-Group) compute-symmetric-Concrete-Group : - type-iso-Group + iso-Group ( abstract-group-Concrete-Group (symmetric-Concrete-Group A)) ( symmetric-Group A) compute-symmetric-Concrete-Group = diff --git a/src/group-theory/torsors.lagda.md b/src/group-theory/torsors.lagda.md index 2ff40ef901..abff902167 100644 --- a/src/group-theory/torsors.lagda.md +++ b/src/group-theory/torsors.lagda.md @@ -666,7 +666,7 @@ module _ is-0-connected-classifying-type-Concrete-Group concrete-group-Group abstract-group-concrete-group-Group : - type-iso-Group (abstract-group-Concrete-Group concrete-group-Group) G + iso-Group (abstract-group-Concrete-Group concrete-group-Group) G abstract-group-concrete-group-Group = iso-equiv-Group ( abstract-group-Concrete-Group concrete-group-Group) diff --git a/src/order-theory/meet-semilattices.lagda.md b/src/order-theory/meet-semilattices.lagda.md index 5181ad2c8c..11b6daf8df 100644 --- a/src/order-theory/meet-semilattices.lagda.md +++ b/src/order-theory/meet-semilattices.lagda.md @@ -636,7 +636,7 @@ module _ compute-meet-order-theoretic-meet-semilattice-Meet-Semilattice x y = refl compute-order-theoretic-meet-semilattice-Meet-Semilattice : - type-iso-Semigroup + iso-Semigroup ( semigroup-Meet-Semilattice A) ( semigroup-Meet-Semilattice ( meet-semilattice-Order-Theoretic-Meet-Semilattice diff --git a/src/ring-theory/isomorphisms-rings.lagda.md b/src/ring-theory/isomorphisms-rings.lagda.md index a112e50e78..ab952ad44c 100644 --- a/src/ring-theory/isomorphisms-rings.lagda.md +++ b/src/ring-theory/isomorphisms-rings.lagda.md @@ -302,13 +302,13 @@ module _ iso-ab-Ring : UU (l1 ⊔ l2) iso-ab-Ring = - Σ ( type-iso-Ab (ab-Ring R) (ab-Ring S)) + Σ ( iso-Ab (ab-Ring R) (ab-Ring S)) ( λ f → is-ring-homomorphism-hom-Ab R S ( hom-iso-Ab (ab-Ring R) (ab-Ring S) f)) iso-ab-iso-ab-Ring : - iso-ab-Ring → type-iso-Ab (ab-Ring R) (ab-Ring S) + iso-ab-Ring → iso-Ab (ab-Ring R) (ab-Ring S) iso-ab-iso-ab-Ring = pr1 is-iso-ab-hom-Ring : hom-Ring R S → UU (l1 ⊔ l2) @@ -434,7 +434,7 @@ module _ ( U))) iso-ab-iso-Ring : - iso-Ring R S → type-iso-Ab (ab-Ring R) (ab-Ring S) + iso-Ring R S → iso-Ab (ab-Ring R) (ab-Ring S) pr1 (iso-ab-iso-Ring f) = hom-ab-hom-Ring R S (hom-iso-Ring R S f) pr2 (iso-ab-iso-Ring f) = is-iso-ab-is-iso-Ring diff --git a/src/ring-theory/transporting-ring-structure-along-isomorphisms-abelian-groups.lagda.md b/src/ring-theory/transporting-ring-structure-along-isomorphisms-abelian-groups.lagda.md index e43661146d..cd604d680c 100644 --- a/src/ring-theory/transporting-ring-structure-along-isomorphisms-abelian-groups.lagda.md +++ b/src/ring-theory/transporting-ring-structure-along-isomorphisms-abelian-groups.lagda.md @@ -46,7 +46,7 @@ transported ring structure. ```agda module _ {l1 l2 : Level} (R : Ring l1) (A : Ab l2) - (f : type-iso-Ab (ab-Ring R) A) + (f : iso-Ab (ab-Ring R) A) where one-transport-ring-structure-iso-Ab : type-Ab A diff --git a/src/univalent-combinatorics/cyclic-finite-types.lagda.md b/src/univalent-combinatorics/cyclic-finite-types.lagda.md index be72510489..04832db1f7 100644 --- a/src/univalent-combinatorics/cyclic-finite-types.lagda.md +++ b/src/univalent-combinatorics/cyclic-finite-types.lagda.md @@ -608,7 +608,7 @@ pr2 (equiv-Ω-Cyclic-Type-Group k) = preserves-concat-equiv-compute-Ω-Cyclic-Type k iso-Ω-Cyclic-Type-Group : - (k : ℕ) → type-iso-Group (Ω-Cyclic-Type-Group k) (ℤ-Mod-Group k) + (k : ℕ) → iso-Group (Ω-Cyclic-Type-Group k) (ℤ-Mod-Group k) iso-Ω-Cyclic-Type-Group k = iso-equiv-Group ( Ω-Cyclic-Type-Group k)