-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdiff_operators.py
187 lines (158 loc) · 7.4 KB
/
diff_operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from torch.autograd import grad
def hessian(y, x):
''' hessian of y wrt x
y: shape (meta_batch_size, num_observations, channels)
x: shape (meta_batch_size, num_observations, 2)
'''
meta_batch_size, num_observations = y.shape[:2]
grad_y = torch.ones_like(y[..., 0]).to(y.device)
h = torch.zeros(meta_batch_size, num_observations, y.shape[-1], x.shape[-1], x.shape[-1]).to(y.device)
for i in range(y.shape[-1]):
# calculate dydx over batches for each feature value of y
dydx = grad(y[..., i], x, grad_y, create_graph=True)[0]
# calculate hessian on y for each x value
for j in range(x.shape[-1]):
h[..., i, j, :] = grad(dydx[..., j], x, grad_y, create_graph=True)[0][..., :]
status = 0
if torch.any(torch.isnan(h)):
status = -1
return h, status
def all_2(y, x):
grad = gradient(y, x)
grad_x = grad[..., 0]
grad_y = grad[..., 1]
grad_xx = torch.autograd.grad(grad_x, x, torch.ones_like(grad_x), create_graph=True)[0][...,0]
grad_xy = torch.autograd.grad(grad_x, x, torch.ones_like(grad_x), create_graph=True)[0][...,1]
grad_yx = torch.autograd.grad(grad_y, x, torch.ones_like(grad_y), create_graph=True)[0][...,0]
grad_yy = torch.autograd.grad(grad_y, x, torch.ones_like(grad_y), create_graph=True)[0][...,1]
return torch.cat([grad_x, grad_y, grad_xx, grad_xy, grad_yx, grad_yy], dim=0)
def second_order(y, x):
grad = gradient(y, x)
grad_x = grad[..., 0]
grad_y = grad[..., 1]
grad_xx = torch.autograd.grad(grad_x, x, torch.ones_like(grad_x), create_graph=True)[0][...,0:1]
grad_xy = torch.autograd.grad(grad_x, x, torch.ones_like(grad_x), create_graph=True)[0][...,1:]
grad_yx = torch.autograd.grad(grad_y, x, torch.ones_like(grad_y), create_graph=True)[0][...,0:1]
grad_yy = torch.autograd.grad(grad_y, x, torch.ones_like(grad_y), create_graph=True)[0][...,1:]
return grad_xx, grad_xy, grad_yx, grad_yy
def third_order(y, x):
grad = gradient(y, x)
grad_x = grad[..., 0]
grad_y = grad[..., 1]
grad_xy = torch.autograd.grad(grad_x, x, torch.ones_like(grad_x), create_graph=True)[0][...,1]
grad_xyy = torch.autograd.grad(grad_xy, x, torch.ones_like(grad_x), create_graph=True)[0][...,1]
grad_yx = torch.autograd.grad(grad_y, x, torch.ones_like(grad_y), create_graph=True)[0][...,0]
grad_yxx = torch.autograd.grad(grad_yx, x, torch.ones_like(grad_y), create_graph=True)[0][...,0]
return grad_xyy.unsqueeze(-1), grad_yxx.unsqueeze(-1)
def all_3(y, x):
grad = gradient(y / 256, x)
grad_x = grad[..., 0]
grad_y = grad[..., 1]
# print(grad_x, grad_y)
ww = torch.autograd.grad(grad_x / 256, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xx = ww[..., 0]
grad_xy = ww[..., 1]
ww = torch.autograd.grad(grad_xx / 256, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xxx = ww[..., 0]
grad_xxy = ww[..., 1]
ww = torch.autograd.grad(grad_xy / 256, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xyx = ww[..., 0]
grad_xyy = ww[..., 1]
ww = torch.autograd.grad(grad_y / 256, x, torch.ones_like(grad_y), create_graph=True)[0]
grad_yx = ww[...,0]
grad_yy = ww[...,1]
ww = torch.autograd.grad(grad_yx / 256, x, torch.ones_like(grad_y), create_graph=True)[0]
grad_yxx = ww[...,0]
grad_yxy = ww[...,1]
ww = torch.autograd.grad(grad_yy / 256, x, torch.ones_like(grad_y), create_graph=True)[0]
grad_yyx = ww[..., 0]
grad_yyy = ww[..., 1]
res = torch.cat([y.squeeze(-1), grad_x, grad_y, grad_xx, grad_xy, grad_yx, grad_yy, grad_xxx, grad_xxy, grad_xyx, grad_xyy, grad_yxx, grad_yxy, grad_yyx, grad_yyy]).unsqueeze(-1)
return res
def new_grad(y, x, sz=256, num=31):
li = [y.squeeze(-1)]
for i in range(num):
cur = li[i]
ww = torch.autograd.grad(cur / sz, x, torch.ones_like(cur), create_graph=True)[0]
li.append(ww[..., 0])
li.append(ww[..., 1])
return torch.cat(li, dim=0).unsqueeze(-1)
def new_grad_lastdim(y, x, sz=256, num=31):
li = [y.squeeze(-1)]
for i in range(num):
cur = li[i]
ww = torch.autograd.grad(cur / sz, x, torch.ones_like(cur), create_graph=True)[0]
li.append(ww[..., 0])
li.append(ww[..., 1])
return torch.stack(li, dim=-1)
def new_grad_xonly(y, x, sz=256):
li = [y.squeeze(-1)]
new = []
for i in range(11):
cur = li[i]
ww = torch.autograd.grad(cur / 256, x, torch.ones_like(cur), create_graph=True)[0]
li.append(ww[..., 0])
new.append(ww[..., 1])
return torch.stack([*li, *new], dim=0).unsqueeze(-1)
def new_grad_audio(y, x, num=3, sz=256):
li = [y.squeeze(-1)]
for i in range(num):
cur = li[i]
ww = torch.autograd.grad(cur / 256, x, torch.ones_like(cur), create_graph=True)[0]
li.append(ww[..., 0])
return torch.cat([*li], dim=0).unsqueeze(-1)
def norm(x):
return x / x.max()
def grad_1dim_x(y, x, sz=256):
grad = torch.autograd.grad(y / sz, x, torch.ones_like(y), create_graph=True)[0]
grad_x = grad[..., 0]
grad_y = grad[..., 1]
ww = torch.autograd.grad(grad_x / sz, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xx = ww[..., 0]
grad_xy = ww[..., 1]
ww = torch.autograd.grad(grad_xx / sz, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xxx = ww[..., 0]
grad_xxy = ww[..., 1]
ww = torch.autograd.grad(grad_xxx / sz, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xxxx = ww[..., 0]
grad_xxxy = ww[..., 1]
ww = torch.autograd.grad(grad_xxxx / sz, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xxxxx = ww[..., 0]
grad_xxxxy = ww[..., 1]
ww = torch.autograd.grad(grad_xxxxx / sz, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xxxxxx = ww[..., 0]
grad_xxxxxy = ww[..., 1]
ww = torch.autograd.grad(grad_xxxxxx / sz, x, torch.ones_like(grad_x), create_graph=True)[0]
grad_xxxxxxx = ww[..., 0]
grad_xxxxxxy = ww[..., 1]
print((grad_x).max(), (grad_xx).max(), (grad_xxx).max(), (grad_xxxx).max(), (grad_xxxxx).max(), (grad_xxxxxx).max(), (grad_xxxxxxx).max())
res = torch.cat([(y.squeeze(-1)), (grad_x), (grad_xx), (grad_xxx), (grad_xxxx), (grad_xxxxx), (grad_xxxxxx), (grad_xxxxxxx)]).unsqueeze(-1)
res2 = torch.cat([(grad_y), (grad_xy), (grad_xxy), (grad_xxxy), (grad_xxxxy), (grad_xxxxxy), (grad_xxxxxxy)]).unsqueeze(-1)
res = torch.cat((res, res2), dim=0)
return res
def laplace(y, x):
grad = gradient(y, x)
return divergence(grad, x)
def divergence(y, x):
div = 0.
for i in range(y.shape[-1]):
div += torch.autograd.grad(y[..., i], x, torch.ones_like(y[..., i]), create_graph=True)[0][..., i:i+1]
return div
def gradient(y, x, grad_outputs=None):
if grad_outputs is None:
grad_outputs = torch.ones_like(y)
grad = torch.autograd.grad(y, [x], grad_outputs=grad_outputs, create_graph=True)[0]
return grad
def jacobian(y, x):
''' jacobian of y wrt x '''
meta_batch_size, num_observations = y.shape[:2]
jac = torch.zeros(meta_batch_size, num_observations, y.shape[-1], x.shape[-1]).to(y.device) # (meta_batch_size*num_points, 2, 2)
for i in range(y.shape[-1]):
# calculate dydx over batches for each feature value of y
y_flat = y[...,i].view(-1, 1)
jac[:, :, i, :] = grad(y_flat, x, torch.ones_like(y_flat), create_graph=True)[0]
status = 0
if torch.any(torch.isnan(jac)):
status = -1
return jac, status