-
Notifications
You must be signed in to change notification settings - Fork 331
4. High‐level Pruners
Gongfan Fang edited this page Jul 21, 2023
·
15 revisions
In Torch-Pruning, each algorithm is implemented as a high-level pruner, responsible for the sparse training (optional), importance estimation, and parameter removal in the pruning process. Torch-pruning provides two core features:
- tp.importance: a criteria to measure weight importance
- tp.pruner: a pruner for pruning
import torch
from torchvision.models import resnet18
import torch_pruning as tp
model = resnet18(pretrained=True)
# Importance criteria
example_inputs = torch.randn(1, 3, 224, 224)
imp = tp.importance.TaylorImportance()
# Ignore some layers, e.g., the output layer
ignored_layers = []
for m in model.modules():
if isinstance(m, torch.nn.Linear) and m.out_features == 1000:
ignored_layers.append(m) # DO NOT prune the final classifier!
# Initialize a pruner
iterative_steps = 5 # progressive pruning
pruner = tp.pruner.MagnitudePruner(
model,
example_inputs,
importance=imp,
iterative_steps=iterative_steps,
ch_sparsity=0.5, # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
ignored_layers=ignored_layers,
)
# prune the model, iteratively if necessary.
base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
for i in range(iterative_steps):
# Taylor expansion requires gradients for importance estimation
if isinstance(imp, tp.importance.TaylorImportance):
# A dummy loss, please replace it with your loss function and data!
loss = model(example_inputs).sum()
loss.backward() # before pruner.step()
pruner.step()
macs, nparams = tp.utils.count_ops_and_params(model, example_inputs)
# finetune your model here
# finetune(model)
# ...
Zzz (¦3[▓▓] |