-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp2.py
73 lines (60 loc) · 2.41 KB
/
app2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pandas as pd
import joblib
from flask import Flask, render_template, request
from datetime import datetime
from forms2 import InputForm2
app = Flask(__name__)
app.config["SECRET_KEY"] = "secret_key"
# Load the serialized pipeline containing both preprocessor and model
pipeline = joblib.load("pipeline2.joblib")
def calculate_duration(dep_time, arrival_time):
dep_time_map = {
"12 midnight to 6am": 0,
"6am to 12 noon": 6,
"12 noon to 6pm": 12,
"6pm to 12 midnight": 18
}
dep_hour = dep_time_map[dep_time]
arrival_hour = dep_time_map[arrival_time]
duration = ((arrival_hour + 6 - dep_hour) % 24) * 60
return duration
@app.route("/")
@app.route("/home")
def home():
return render_template("home.html", title="Home")
@app.route('/about')
def about():
return render_template("about.html", title="About")
@app.route("/predict", methods=["GET", "POST"])
def predict():
form = InputForm2()
if form.validate_on_submit():
# Convert date_of_journey to datetime
date_of_journey = pd.to_datetime(form.date_of_journey.data)
# Calculate duration
duration = calculate_duration(form.dep_time.data, form.arrival_time.data)
# Determine if the journey is on a weekend
is_weekend = int(date_of_journey.weekday() >= 5)
# Prepare input data similar to the structure of your training data
x_new = pd.DataFrame({
'airline': [form.airline.data],
'source': [form.source.data],
'destination': [form.destination.data],
'duration': [duration],
'total_stops': [form.total_stops.data],
'dep_time': [form.dep_time.data],
'arrival_time': [form.arrival_time.data],
'month': [date_of_journey.month],
'day': [date_of_journey.day],
'is_weekend': [is_weekend]
})
# Transform the input data using the preprocessor from the pipeline
x_new_transformed = pipeline['preprocessor'].transform(x_new)
# Make predictions using the model from the pipeline
prediction = pipeline['model'].predict(x_new_transformed)[0]
message = f"The predicted price is {prediction:,.0f} INR!"
else:
message = "Please provide valid input details!"
return render_template("predict2.html", title="Predict", form=form, output=message)
if __name__ == "__main__":
app.run(debug=True)