-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathBidModel.py
117 lines (97 loc) · 3.25 KB
/
BidModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# -*- coding: utf-8 -*-
# Created by: Vincentzyx
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import time
import torch.nn.functional as F
def EnvToOnehot(cards):
Env2IdxMap = {3: 0, 4: 1, 5: 2, 6: 3, 7: 4, 8: 5, 9: 6, 10: 7, 11: 8, 12: 9, 13: 10, 14: 11, 17: 12, 20: 13, 30: 14}
cards = [Env2IdxMap[i] for i in cards]
Onehot = torch.zeros((4, 15))
for i in range(0, 15):
Onehot[:cards.count(i), i] = 1
return Onehot
def RealToOnehot(cards):
RealCard2EnvCard = {'3': 0, '4': 1, '5': 2, '6': 3, '7': 4,
'8': 5, '9': 6, 'T': 7, 'J': 8, 'Q': 9,
'K': 10, 'A': 11, '2': 12, 'X': 13, 'D': 14}
cards = [RealCard2EnvCard[c] for c in cards]
Onehot = torch.zeros((4, 15))
for i in range(0, 15):
Onehot[:cards.count(i), i] = 1
return Onehot
class Net2(nn.Module):
def __init__(self):
super().__init__()
# input: 1 * 60
self.conv1 = nn.Conv1d(1, 16, kernel_size=(3,), padding=1) # 32 * 60
self.dense1 = nn.Linear(1020, 1024)
self.dense2 = nn.Linear(1024, 512)
self.dense3 = nn.Linear(512, 256)
self.dense4 = nn.Linear(256, 128)
self.dense5 = nn.Linear(128, 1)
def forward(self, xi):
x = xi.unsqueeze(1)
x = F.leaky_relu(self.conv1(x))
x = x.flatten(1, 2)
x = torch.cat((x, xi), 1)
x = F.leaky_relu(self.dense1(x))
x = F.leaky_relu(self.dense2(x))
x = F.leaky_relu(self.dense3(x))
x = F.leaky_relu(self.dense4(x))
x = self.dense5(x)
return x
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(60, 512)
self.fc2 = nn.Linear(512, 512)
self.fc3 = nn.Linear(512, 512)
self.fc4 = nn.Linear(512, 512)
self.fc5 = nn.Linear(512, 512)
self.fc6 = nn.Linear(512, 1)
self.dropout5 = nn.Dropout(0.5)
self.dropout3 = nn.Dropout(0.3)
self.dropout1 = nn.Dropout(0.1)
def forward(self, input):
x = self.fc1(input)
x = torch.relu(self.dropout1(self.fc2(x)))
x = torch.relu(self.dropout3(self.fc3(x)))
x = torch.relu(self.dropout5(self.fc4(x)))
x = torch.relu(self.dropout5(self.fc5(x)))
x = self.fc6(x)
return x
UseGPU = False
device = torch.device('cuda:0')
net = Net()
net2 = Net2()
net.eval()
net2.eval()
if UseGPU:
net = net.to(device)
net2 = net2.to(device)
if os.path.exists("./weights/bid_weights.pkl"):
if torch.cuda.is_available():
net2.load_state_dict(torch.load('./weights/bid_weights.pkl'))
else:
net2.load_state_dict(torch.load('./weights/bid_weights.pkl', map_location=torch.device("cpu")))
def predict(cards):
input = RealToOnehot(cards)
if UseGPU:
input = input.to(device)
input = torch.flatten(input)
win_rate = net(input)
return win_rate[0].item() * 100
def predict_score(cards):
input = RealToOnehot(cards)
if UseGPU:
input = input.to(device)
input = torch.flatten(input)
input = input.unsqueeze(0)
result = net2(input)
return result[0].item()
if __name__ == "__main__":
print(predict_score("333444569TTJJQKK2"))