-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
44 lines (43 loc) · 1.35 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Project related
tracking_uri: http://127.0.0.1:3080
logging_precision: 5
train_dataset_name: train
test_dataset_name: test
datasets_file_format: csv
dvc_remote_name: s3_repo
local_datasets_dir: data
dt_col_name:
split_dt_thresh:
id_col_name:
# Model related
save_dir: models
name: breast_cancer_xgb
type_: classifier # classifier/regressor/question-answering/text-summarization/text/retriever
champion_alias: champion
load_by_alias: False
mlflow_save_format: xgb # non-sklearn libraries
local_save_format: ubj # non-sklearn libraries
sklearn_save_format: pkl
sklearn_predict_fn: predict_proba # predict/predict_proba/predict_log_proba/predict_joint_log_proba/score
target_name: target
default_test_size: 0.33 # specified in MLproject
params_tuning_n_trials: 10 # specified in MLproject
cv_n_folds: 3
params_eval_metrics: # last will be used for early stopping
- error
- aucpr
- auc
params_tuning_metric: auc
params_tuning_direction: maximize # minimize/maximize
additional_metrics:
gini:
source: auc
formula: "2 * {} - 1"
accuracy:
source: error
formula: "1 - {}"
early_stopping_heuristic: 0.1
importance_types: # for linear models -- only "weight"
- weight # number of times a feature appears in a tree
- gain # average gain of splits which use the feature
- cover # average number of samples affected by the splits which use the feature