-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathplotutils.py
116 lines (98 loc) · 4.59 KB
/
plotutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os.path as op
import numpy as np
import pandas as pd
import matplotlib as mpl
import seaborn as sns
from seaborn.external.husl import husl_to_rgb
from PIL import Image
from cStringIO import StringIO
import moss
import lyman
def set_style():
"""Consistent style for plots."""
sns.set(style="ticks", context="paper", font_scale=.9,
rc={"xtick.major.size": 3, "ytick.major.size": 3,
"xtick.major.width": 1, "ytick.major.width": 1,
"xtick.major.pad": 3.5, "ytick.major.pad": 3.5,
"axes.linewidth": 1, "lines.linewidth": 1})
def savefig(f, fname):
fstem = op.join("figures", op.basename(fname.strip(".py")))
# Save to PDF
f.savefig(fstem + ".pdf", dpi=150)
# Save to TIFF
# Uses a trip through PIL -- native saving in matplotlib was producing
# bad-looking .tiff files. I have no idea why; it used to work.
buffer = StringIO()
f.savefig(buffer, format="png", dpi=300)
buffer.seek(0)
im = Image.open(buffer)
im.save(fstem + ".tiff")
def points_to_lines(ax, w=.8, **kws):
"""Replace the central tendency glyph from a pointplot with a line."""
for col in ax.collections:
for (x, y), fc in zip(col.get_offsets(), col.get_facecolors()):
ax.plot([x - w / 2, x + w / 2], [y, y], color=fc, **kws)
col.remove()
def get_colormap(exp, as_cmap=True):
"""Get experiment-specific diverging colormaps."""
lums = np.linspace(50, 99, 128)
sats = np.linspace(80, 20, 128)
assert exp in ["dots", "sticks", "rest"]
h1 = 240 if exp == "dots" else 160
h2 = 20
lut = ([husl_to_rgb(h1, s, l) for s, l in zip(sats, lums)] +
[husl_to_rgb(h2, s, l) for s, l in zip(sats, lums)][::-1])
if as_cmap:
return mpl.colors.ListedColormap(lut)
return lut
def get_ifs_view(subj, hemi):
"""Return mlab.view parameters to center IFS in the window."""
views = dict(pc07=dict(lh=(170, 80, 130, [0, 45, 20]),
rh=(10, 80, 130, [0, 50, 20])),
pc08=dict(lh=(170, 85, 150, [0, 50, 20]),
rh=(10, 80, 130, [0, 55, 20])),
pc11=dict(lh=(170, 80, 140, [0, 55, 30]),
rh=(10, 80, 130, [0, 50, 35])),
pc12=dict(lh=(170, 80, 155, [0, 50, 30]),
rh=(10, 80, 130, [0, 50, 35])),
pc13=dict(lh=(170, 80, 140, [0, 50, 20]),
rh=(10, 80, 125, [0, 60, 25])),
pc14=dict(lh=(170, 80, 140, [0, 50, 35]),
rh=(10, 80, 135, [0, 50, 35])),
pc15=dict(lh=(170, 80, 135, [0, 70, 30]),
rh=(10, 80, 145, [0, 55, 25])),
pc16=dict(lh=(170, 80, 145, [0, 60, 20]),
rh=(10, 80, 145, [0, 55, 17])),
pc17=dict(lh=(170, 75, 145, [0, 60, 23]),
rh=(10, 75, 135, [0, 50, 23])),
pc18=dict(lh=(170, 80, 170, [0, 55, 23]),
rh=(10, 80, 170, [0, 65, 23])),
pc19=dict(lh=(170, 80, 130, [0, 55, 25]),
rh=(10, 80, 130, [0, 55, 25])),
pc22=dict(lh=(170, 80, 130, [0, 40, 25]),
rh=(10, 80, 120, [0, 45, 25])),
pc23=dict(lh=(170, 80, 150, [0, 55, 15]),
rh=(10, 80, 150, [0, 55, 15])),
pc24=dict(lh=(170, 80, 150, [0, 60, 35]),
rh=(10, 80, 140, [0, 55, 33])),
ti01=dict(lh=(170, 80, 135, [0, 60, 22]),
rh=(10, 80, 130, [0, 55, 15])),
ti03=dict(lh=(170, 80, 135, [0, 50, 20]),
rh=(10, 80, 145, [0, 55, 25])),
ti05=dict(lh=(170, 80, 145, [0, 50, 35]),
rh=(10, 80, 145, [0, 50, 30])),
ti06=dict(lh=(170, 80, 140, [0, 50, 35]),
rh=(10, 80, 130, [0, 47, 33])),
ti07=dict(lh=(170, 80, 150, [0, 68, 27]),
rh=(10, 80, 155, [0, 65, 20])),
ti08=dict(lh=(170, 80, 150, [0, 60, 25]),
rh=(10, 80, 145, [0, 60, 20])),
)
return views[subj][hemi]
def get_subject_order(exp):
subjects = lyman.determine_subjects([exp + "_subjects"])
accs = pd.Series(index=subjects, dtype=np.float)
for subj in subjects:
fname = "decoding_analysis/{}_{}_ifs.pkz".format(subj, exp)
accs.ix[subj] = moss.load_pkl(fname).acc
return list(accs.sort(inplace=False, ascending=False).index)