-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhpo.py
204 lines (178 loc) · 7.55 KB
/
hpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from argparse import ArgumentParser
from pprint import pformat
import joblib as joblib
import mlflow
import numpy as np
import optuna
import pandas as pd
import yaml
from optuna.integration import MLflowCallback
from optuna.samplers import TPESampler
from optuna.visualization import plot_edf, plot_contour, plot_intermediate_values, plot_optimization_history, \
plot_parallel_coordinate, plot_param_importances
def show_optuna_results(filepath) -> None:
"""
Prints results of the hyperparameter optimization into command line.
:param filepath: The filename of the optuna file to be loaded.
:return: None.
"""
study = joblib.load(filepath)
print('Best trial until now:', study.best_trial.number)
print(' Value: ', study.best_trial.value)
print(' Params: ')
for key, value in study.best_trial.params.items():
print(f' {key}: {value}')
def plot_optuna_results(log_dir: str, study: optuna.study.Study) -> None:
"""
Creates several plots obtained during a Optuna study, most importantly hyperparameter importance.
:param log_dir: Directory where plots are saved.
:param study: Optuna study object to create plots.
"""
os.makedirs(log_dir, exist_ok=True)
plots = []
names = ['edf', 'contour', 'intermediate', 'history', 'parallel', 'importance']
plots.append(plot_edf(study))
plots.append(plot_contour(study))
plots.append(plot_intermediate_values(study))
plots.append(plot_optimization_history(study))
plots.append(plot_parallel_coordinate(study))
plots.append(plot_param_importances(study))
for idx, name in enumerate(names):
plots[idx].write_html(f"{log_dir}/{name}.html")
def suggest_hyperparameters(trial: optuna.Trial):
"""
Suggests hyperparameters for an Optuna trial. For further details see the Optuna documentation.
:param trial: Optuna Trial object.
:return: Dictionary containing the suggested hyperparameters.
"""
lr = 0.0013615251237209865 # trial.suggest_float("lr", 1e-5, 1e-1, log=True)
weight_decay = 0.06967745801533658 # trial.suggest_float("weight-decay", 1e-4, 5e-1, log=True)
epsilon = 3.170393250650158e-12 # trial.suggest_float("epsilon", 1e-16, 1e-8, log=True)
gamma = trial.suggest_uniform("gamma-factor", 1.4, 3)
max_epochs = 56 # trial.suggest_int('max_epochs', low=50, high=100)
hps = {'lr': lr, 'weight-decay': weight_decay, 'gamma-factor': gamma,
'epsilon': epsilon, 'max_epochs': max_epochs}
for i in range(5):
hps[f'alpha-{i}'] = trial.suggest_float(f"alpha_{i}", 1e-2, 1)
print(f"Suggested hyperparameters: \n{pformat(trial.params)}")
return hps
def objective(
trial: optuna.Trial,
) -> float:
hparams = suggest_hyperparameters(trial)
mlflow_path = "mlruns"
remove_previous_model(mlflow_path)
val_iou = run_mlflow_project(hparams, "HPO Optimization")
return val_iou
def run_mlflow_project(hparams, experiment_name):
try:
mlflow.projects.run('.', parameters=hparams, experiment_name=experiment_name)
with open('best.txt') as file:
val_iou = float(file.readline())
except RuntimeError:
val_iou = 0
return val_iou
def test_reproducibility(hparams: dict, n_trials_reproducibility: int = 10,
csv_path: str = os.path.join("deterministic", "ious.csv"), mlflow_path: str = "mlruns"):
"""
:param hparams: Hyperparameters to test the reproducibility of the experiment.
:param n_trials_reproducibility: Number of trials to test the reproducibility of the experiment.
:return: Best validation IoUs achieved during each training run.
"""
val_ious = []
os.makedirs(csv_path, exist_ok=True)
for i in range(n_trials_reproducibility):
remove_previous_model(mlflow_path)
val_ious.append(run_mlflow_project(hparams, "reproducibility"))
val_ious = np.array(val_ious)
pd.DataFrame(val_ious, columns=['Run']).to_csv(os.path.join(csv_path, "determinism_test_ious.csv"))
if np.var(val_ious, axis=0) == 0.0:
print("Model is reproducible")
else:
print("Model is not reproducible")
def remove_previous_model(mlflow_path):
try:
os.remove(mlflow_path + "/best.ckpt")
os.remove(mlflow_path + "/lr_find_temp_model.ckpt")
except OSError as e:
print("Error: %s : %s" % (mlflow_path, e.strerror))
def optimize_hyperparameters(seed=0, n_startup_trials=10, n_trials=100, sampler_name: str = 'MultivariateTPE',
pruner_name: str = None, log_dir: str = os.path.join(os.getcwd(), 'optuna'),
joblib_filename: str = 'optuna.pkl', plot_dir="plots"):
mlflow_cb = MLflowCallback(
tracking_uri='mlruns',
metric_name='val_avg_iou'
)
sampler = get_sampler(n_startup_trials, sampler_name, seed)
pruner = get_pruner(pruner_name)
study = optuna.create_study(sampler=sampler, pruner=pruner, study_name="HPO Optimization", direction='maximize', )
study.optimize(objective, n_trials=n_trials, callbacks=[mlflow_cb], timeout=48 * 60 * 60)
os.makedirs(log_dir, exist_ok=True)
optuna_filepath = os.path.join(log_dir, joblib_filename)
joblib.dump(value=study, filename=optuna_filepath)
show_optuna_results(filepath=optuna_filepath)
plot_dir = os.path.join(log_dir, plot_dir)
plot_optuna_results(log_dir=plot_dir, study=study)
return study.best_trial.params
def get_sampler(n_startup_trials, sampler_name, seed):
if sampler_name == "MultivariateTPE":
sampler = TPESampler(seed=seed, multivariate=True, n_startup_trials=n_startup_trials)
else:
print("Currently only MultivariateTPE is supported, switching to MultivariateTPE.")
sampler = TPESampler(seed=seed, multivariate=True, n_startup_trials=n_startup_trials)
return sampler
def get_pruner(pruner_name):
if pruner_name == "Hyperband":
print("Hyperband not working correctly.")
pruner = optuna.pruners.HyperbandPruner()
else:
print("Currently only Hyperband is supported, deactivating pruning.")
pruner = None
return pruner
if __name__ == "__main__":
"""
Conducts Hyperparameter optimization for the rsphd project.
"""
parser = ArgumentParser(description='Optuna argument parser.')
parser.add_argument(
'--n-trials',
type=int,
default=1000,
help='Number of trials to optimize',
)
parser.add_argument(
'--n-startup-trials',
type=int,
default=10,
help='Number of trials for startup',
)
parser.add_argument(
'--seed',
type=int,
default=0,
help='Seed of the Optuna Sampler',
)
parser.add_argument(
'--sampler',
type=str,
default='MultivariateTPE',
help='Name of the Optuna sampler',
choices=['MultivariateTPE']
)
parser.add_argument(
'--pruner',
type=str,
default='Hyperband',
help='Name of the Optuna pruner',
choices=[None, 'Hyperband']
)
args = parser.parse_args()
optuna_hparams = vars(args)
optuna_log_dir = os.path.join(os.getcwd(), 'optuna')
final_hps = optimize_hyperparameters(optuna_hparams['seed'], optuna_hparams['n_startup_trials'],
optuna_hparams['n_trials'],
optuna_hparams['sampler'], optuna_hparams['pruner'], log_dir=optuna_log_dir)
with open(f'{optuna_log_dir}/best_hparams.yml', 'w') as outfile:
yaml.dump(final_hps, outfile)
test_reproducibility(final_hps, csv_path=os.path.join(optuna_log_dir))