forked from rasbt/LLMs-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadditional_experiments.py
609 lines (506 loc) · 21.4 KB
/
additional_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import argparse
import math
import os
from pathlib import Path
import time
import urllib.request
import zipfile
import pandas as pd
import tiktoken
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from gpt_download import download_and_load_gpt2
from previous_chapters import GPTModel, load_weights_into_gpt
class LoRALayer(torch.nn.Module):
def __init__(self, in_dim, out_dim, rank, alpha):
super().__init__()
self.A = torch.nn.Parameter(torch.empty(in_dim, rank))
torch.nn.init.kaiming_uniform_(self.A, a=math.sqrt(5))
self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
self.alpha = alpha
def forward(self, x):
x = self.alpha * (x @ self.A @ self.B)
return x
class LinearWithLoRA(torch.nn.Module):
def __init__(self, linear, rank, alpha):
super().__init__()
self.linear = linear
self.lora = LoRALayer(
linear.in_features, linear.out_features, rank, alpha
)
def forward(self, x):
return self.linear(x) + self.lora(x)
# This LoRA code is equivalent to LinearWithLoRA
class LinearWithLoRAMerged(torch.nn.Module):
def __init__(self, linear, rank, alpha):
super().__init__()
self.linear = linear
self.lora = LoRALayer(
linear.in_features, linear.out_features, rank, alpha
)
def forward(self, x):
lora = self.lora.A @ self.lora.B
combined_weight = self.linear.weight + self.lora.alpha*lora.T
return torch.nn.functional.linear(x, combined_weight, self.linear.bias)
class SpamDataset(Dataset):
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, no_padding=False):
self.data = pd.read_csv(csv_file)
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
# Pre-tokenize texts
self.encoded_texts = [
tokenizer.encode(text)[:self.max_length]
for text in self.data["Text"]
]
if not no_padding:
# Pad sequences to the longest sequence
self.encoded_texts = [
et + [pad_token_id] * (self.max_length - len(et))
for et in self.encoded_texts
]
def __getitem__(self, index):
encoded = self.encoded_texts[index]
label = self.data.iloc[index]["Label"]
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
def __len__(self):
return len(self.data)
def _longest_encoded_length(self, tokenizer):
max_length = 0
for text in self.data["Text"]:
encoded_length = len(tokenizer.encode(text))
if encoded_length > max_length:
max_length = encoded_length
return max_length
def download_and_unzip(url, zip_path, extract_to, new_file_path):
if new_file_path.exists():
print(f"{new_file_path} already exists. Skipping download and extraction.")
return
# Downloading the file
with urllib.request.urlopen(url) as response:
with open(zip_path, "wb") as out_file:
out_file.write(response.read())
# Unzipping the file
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
# Renaming the file to indicate its format
original_file = Path(extract_to) / "SMSSpamCollection"
os.rename(original_file, new_file_path)
print(f"File downloaded and saved as {new_file_path}")
def random_split(df, train_frac, validation_frac):
# Shuffle the entire DataFrame
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
# Calculate split indices
train_end = int(len(df) * train_frac)
validation_end = train_end + int(len(df) * validation_frac)
# Split the DataFrame
train_df = df[:train_end]
validation_df = df[train_end:validation_end]
test_df = df[validation_end:]
return train_df, validation_df, test_df
def create_dataset_csvs(new_file_path):
df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
# Create balanced dataset
n_spam = df[df["Label"] == "spam"].shape[0]
ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
# Sample and save csv files
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
train_df.to_csv("train.csv", index=None)
validation_df.to_csv("validation.csv", index=None)
test_df.to_csv("test.csv", index=None)
def instantiate_model(choose_model, load_weights):
BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
BASE_CONFIG.update(model_configs[choose_model])
if not load_weights:
torch.manual_seed(123)
model = GPTModel(BASE_CONFIG, disable_causal_mask=args.disable_causal_mask)
if load_weights:
model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
load_weights_into_gpt(model, params)
model.eval()
return model
def calc_loss_batch(input_batch, target_batch, model, device,
trainable_token_pos=-1, ignore_index=-100):
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
logits = model(input_batch)[:, trainable_token_pos, :] # Logits of last output token
loss = torch.nn.functional.cross_entropy(logits, target_batch, ignore_index=ignore_index)
return loss
def calc_loss_loader(data_loader, model, device,
num_batches=None, trainable_token_pos=-1, ignore_index=-100):
total_loss = 0.
if len(data_loader) == 0:
return float("nan")
elif num_batches is None:
num_batches = len(data_loader)
else:
# Reduce the number of batches to match the total number of batches in the data loader
# if num_batches exceeds the number of batches in the data loader
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
loss = calc_loss_batch(
input_batch, target_batch, model, device,
trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
)
total_loss += loss.item()
else:
break
return total_loss / num_batches
@torch.no_grad() # Disable gradient tracking for efficiency
def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token_pos=-1):
model.eval()
correct_predictions, num_examples = 0, 0
if num_batches is None:
num_batches = len(data_loader)
else:
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
logits = model(input_batch)[:, trainable_token_pos, :] # Logits of last output token
predicted_labels = torch.argmax(logits, dim=-1)
num_examples += predicted_labels.shape[0]
correct_predictions += (predicted_labels == target_batch).sum().item()
else:
break
return correct_predictions / num_examples
def evaluate_model(model, train_loader, val_loader, device,
eval_iter, trainable_token_pos=-1, ignore_index=-100):
model.eval()
with torch.no_grad():
train_loss = calc_loss_loader(
train_loader, model, device, num_batches=eval_iter,
trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
)
val_loss = calc_loss_loader(
val_loader, model, device, num_batches=eval_iter,
trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
)
model.train()
return train_loss, val_loss
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
eval_freq, eval_iter, max_steps=None, trainable_token_pos=-1,
accumulation_steps=1, ignore_index=-100):
# Initialize lists to track losses and tokens seen
train_losses, val_losses, train_accs, val_accs = [], [], [], []
examples_seen, global_step = 0, -1
# Main training loop
for epoch in range(num_epochs):
model.train() # Set model to training mode
for batch_idx, (input_batch, target_batch) in enumerate(train_loader):
loss = calc_loss_batch(
input_batch, target_batch, model, device,
trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
)
# Use gradient accumulation if accumulation_steps > 1
# See https://sebastianraschka.com/blog/2023/llm-grad-accumulation.html
# for an explanation
loss /= accumulation_steps
loss.backward() # Calculate loss gradients
# Use gradient accumulation if accumulation_steps > 1
is_update_step = ((batch_idx + 1) % accumulation_steps == 0) or ((batch_idx + 1) == len(train_loader))
if is_update_step:
optimizer.step() # Update model weights using loss gradients
optimizer.zero_grad() # Reset loss gradients from previous batch iteration
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
global_step += 1
# Optional evaluation step
if global_step % eval_freq == 0:
train_loss, val_loss = evaluate_model(
model, train_loader, val_loader, device, eval_iter,
trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
)
train_losses.append(train_loss)
val_losses.append(val_loss)
print(f"Ep {epoch+1} (Step {global_step:06d}): "
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
if max_steps is not None and global_step > max_steps:
break
# New: Calculate accuracy after each epoch
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token_pos=trainable_token_pos)
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token_pos=trainable_token_pos)
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
train_accs.append(train_accuracy)
val_accs.append(val_accuracy)
if max_steps is not None and global_step > max_steps:
break
return train_losses, val_losses, train_accs, val_accs, examples_seen
def replace_linear_with_lora(model, rank, alpha, alternative=False):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
# Replace the Linear layer with LinearWithLoRA
if alternative:
setattr(model, name, LinearWithLoRAMerged(module, rank, alpha))
else:
setattr(model, name, LinearWithLoRA(module, rank, alpha))
else:
# Recursively apply the same function to child modules
replace_linear_with_lora(module, rank, alpha)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_size",
type=str,
default="gpt2-small (124M)",
help=(
"Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
" 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
)
)
parser.add_argument(
"--weights",
type=str,
default="pretrained",
help=(
"Whether to use 'pretrained' or 'random' weights."
)
)
parser.add_argument(
"--trainable_layers",
type=str,
default="last_block",
help=(
"Which layers to train. Options: 'all', 'last_block', 'last_two_blocks', 'last_layer', 'lora', 'lora_alternative'."
)
)
parser.add_argument(
"--trainable_token_pos",
type=str,
default="last",
help=(
"Which token position to train. Options: 'first', 'last'."
)
)
parser.add_argument(
"--context_length",
type=str,
default="longest_training_example",
help=(
"The context length of the data inputs."
"Options: 'longest_training_example', 'model_context_length' or integer value."
)
)
parser.add_argument(
"--lora_rank",
type=int,
default=8,
help=(
"The LoRA rank when choosing `--trainable_layers lora`"
)
)
parser.add_argument(
"--lora_alpha",
type=int,
default=8,
help=(
"The LoRA alpha value when choosing `--trainable_layers lora`"
)
)
parser.add_argument(
"--no_padding",
action='store_true',
default=False,
help=(
"Disable padding, which means each example may have a different length."
" This requires setting `--batch_size 1`."
)
)
parser.add_argument(
"--num_epochs",
type=int,
default=5,
help=(
"Number of training epochs."
)
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help=(
"The batch size used for training."
)
)
parser.add_argument(
"--accumulation_steps",
type=int,
default=1,
help=(
"Accumulation steps to allow for gradient accumulation."
" See https://sebastianraschka.com/blog/2023/llm-grad-accumulation.html for explanation."
" For example, setting `batch_size=8` and `accumulation_steps=1` compute the exact same"
" loss and weight updates as setting `batch_size=1` and `accumulation_steps=8`, however,"
" the latter setting uses more iterations."
)
)
parser.add_argument(
"--disable_causal_mask",
action='store_true',
default=False,
help=(
"Disables the causal attention mask."
)
)
parser.add_argument(
"--ignore_index",
type=int,
default=-100,
help=(
"Sets the `ignore_index` in the cross-entropy loss."
)
)
args = parser.parse_args()
if args.trainable_token_pos == "first":
args.trainable_token_pos = 0
elif args.trainable_token_pos == "last":
args.trainable_token_pos = -1
else:
raise ValueError("Invalid --trainable_token_pos argument")
###############################
# Load model
###############################
if args.weights == "pretrained":
load_weights = True
elif args.weights == "random":
load_weights = False
else:
raise ValueError("Invalid --weights argument.")
model = instantiate_model(args.model_size, load_weights)
for param in model.parameters():
param.requires_grad = False
if args.model_size == "gpt2-small (124M)":
in_features = 768
elif args.model_size == "gpt2-medium (355M)":
in_features = 1024
elif args.model_size == "gpt2-large (774M)":
in_features = 1280
elif args.model_size == "gpt2-xl (1558M)":
in_features = 1600
else:
raise ValueError("Invalid --model_size argument")
torch.manual_seed(123)
model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
if args.trainable_layers == "last_layer":
pass
elif args.trainable_layers == "last_block" or args.trainable_layers == "last_two_blocks":
for param in model.trf_blocks[-1].parameters():
param.requires_grad = True
for param in model.final_norm.parameters():
param.requires_grad = True
if args.trainable_layers == "last_two_blocks":
for param in model.trf_blocks[-2].parameters():
param.requires_grad = True
elif args.trainable_layers == "all":
for param in model.parameters():
param.requires_grad = True
elif args.trainable_layers in ("lora", "lora_alternative"):
if args.trainable_layers == "lora_alternative":
alternative = True
else:
alternative = False
replace_linear_with_lora(model, rank=args.lora_rank, alpha=args.lora_alpha, alternative=alternative)
else:
raise ValueError("Invalid --trainable_layers argument.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
###############################
# Instantiate dataloaders
###############################
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
zip_path = "sms_spam_collection.zip"
extract_to = "sms_spam_collection"
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
base_path = Path(".")
file_names = ["train.csv", "validation.csv", "test.csv"]
all_exist = all((base_path / file_name).exists() for file_name in file_names)
if not all_exist:
download_and_unzip(url, zip_path, extract_to, new_file_path)
create_dataset_csvs(new_file_path)
tokenizer = tiktoken.get_encoding("gpt2")
train_dataset = None
if args.no_padding:
max_length = None
else:
if args.context_length == "model_context_length":
max_length = model.pos_emb.weight.shape[0]
elif args.context_length == "longest_training_example":
train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer, no_padding=args.no_padding)
max_length = train_dataset.max_length
else:
try:
max_length = int(args.context_length)
except ValueError:
raise ValueError("Invalid --context_length argument")
if train_dataset is None:
train_dataset = SpamDataset(base_path / "train.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
val_dataset = SpamDataset(base_path / "validation.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
test_dataset = SpamDataset(base_path / "test.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
tokenizer = tiktoken.get_encoding("gpt2")
num_workers = 0
train_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=args.batch_size,
num_workers=num_workers,
drop_last=False,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=args.batch_size,
num_workers=num_workers,
drop_last=False,
)
assert train_dataset.max_length <= model.pos_emb.weight.shape[0], (
f"Dataset length {train_dataset.max_length} exceeds model's context "
f"length {model.pos_emb.weight.shape[0]}. Reinitialize data sets with "
f"`max_length={model.pos_emb.weight.shape[0]}`"
)
###############################
# Train model
###############################
start_time = time.time()
torch.manual_seed(123)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
model, train_loader, val_loader, optimizer, device,
num_epochs=args.num_epochs, eval_freq=50, eval_iter=5,
max_steps=None, trainable_token_pos=args.trainable_token_pos,
accumulation_steps=args.accumulation_steps
)
end_time = time.time()
execution_time_minutes = (end_time - start_time) / 60
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
###############################
# Evaluate model
###############################
train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token_pos=args.trainable_token_pos)
val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token_pos=args.trainable_token_pos)
test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token_pos=args.trainable_token_pos)
print(f"Training accuracy: {train_accuracy*100:.2f}%")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
print(f"Test accuracy: {test_accuracy*100:.2f}%")