Skip to content

Latest commit

 

History

History
405 lines (309 loc) · 14.7 KB

0309.最佳买卖股票时机含冷冻期.md

File metadata and controls

405 lines (309 loc) · 14.7 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

309.最佳买卖股票时机含冷冻期

力扣题目链接

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

示例:

  • 输入: [1,2,3,0,2]
  • 输出: 3
  • 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

相对于动态规划:122.买卖股票的最佳时机II,本题加上了一个冷冻期

动态规划:122.买卖股票的最佳时机II 中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。

具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。

从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。

如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1,2,3,4 的题目讲解中

「今天卖出股票」我是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?

因为本题我们有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。

如果没有按照 代码随想录 顺序去刷的录友,可能看这里的讲解 会有点困惑,建议把代码随想录本篇之前股票内容的讲解都看一下,领会一下每天 状态的设置。

注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态

  1. 确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
  1. dp数组如何初始化

这里主要讨论一下第0天如何初始化。

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。

如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

  1. 确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

  1. 举例推导dp数组

以 [1,2,3,0,2] 为例,dp数组如下:

309.最佳买卖股票时机含冷冻期

最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if (n == 0) return 0;
        vector<vector<int>> dp(n, vector<int>(4, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[n - 1][3], max(dp[n - 1][1], dp[n - 1][2]));
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

当然,空间复杂度可以优化,定义一个dp[2][4]大小的数组就可以了,就保存前一天的当前的状态,感兴趣的同学可以自己去写一写,思路是一样的。

总结

这次把冷冻期这道题目,讲的很透彻了,细分为四个状态,其状态转移也十分清晰,建议大家都按照四个状态来分析,如果只划分三个状态确实很容易给自己绕进去。

其他语言版本

Java:

class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length < 2) {
            return 0;
        }
        int[][] dp = new int[prices.length][2];

        // bad case
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[1][0] = Math.max(dp[0][0], dp[0][1] + prices[1]);
        dp[1][1] = Math.max(dp[0][1], -prices[1]);

        for (int i = 2; i < prices.length; i++) {
            // dp公式
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 2][0] - prices[i]);
        }

        return dp[prices.length - 1][0];
    }
}
// 一维数组优化
class Solution {
    public int maxProfit(int[] prices) {
        int[] dp=new int[4];

        dp[0] = -prices[0];
        dp[1] = 0;
        for(int i = 1; i <= prices.length; i++){
          	// 使用临时变量来保存dp[0], dp[2]
            // 因为马上dp[0]和dp[2]的数据都会变 
            int temp = dp[0];
            int temp1 = dp[2];
            dp[0] = Math.max(dp[0], Math.max(dp[3], dp[1]) - prices[i-1]);
            dp[1] = Math.max(dp[1], dp[3]);
            dp[2] = temp + prices[i-1];
            dp[3] = temp1;
        }
        return Math.max(dp[3],Math.max(dp[1],dp[2]));
    }
}
//另一种解题思路
class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp = new int[prices.length + 1][2];
        dp[1][0] = -prices[0];

        for (int i = 2; i <= prices.length; i++) {
            /*
            dp[i][0] 第i天持有股票收益;
            dp[i][1] 第i天不持有股票收益;
            情况一:第i天是冷静期,不能以dp[i-1][1]购买股票,所以以dp[i - 2][1]买股票,没问题
            情况二:第i天不是冷静期,理论上应该以dp[i-1][1]购买股票,但是第i天不是冷静期说明,第i-1天没有卖出股票,
                则dp[i-1][1]=dp[i-2][1],所以可以用dp[i-2][1]买股票,没问题
             */
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 2][1] - prices[i - 1]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i - 1]);
        }

        return dp[prices.length][1];
    }
}

Python:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        if n == 0:
            return 0
        dp = [[0] * 4 for _ in range(n)]
        dp[0][0] = -prices[0] #持股票
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][3])
            dp[i][2] = dp[i-1][0] + prices[i]
            dp[i][3] = dp[i-1][2]
        return max(dp[n-1][3], dp[n-1][1], dp[n-1][2])

Go:

// 最佳买卖股票时机含冷冻期 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int) int {
    n := len(prices)
    if n < 2 {
        return 0
    }

    dp := make([][]int, n)
    status := make([]int, n * 4)
    for i := range dp {
        dp[i] = status[:4]
        status = status[4:]
    }
    dp[0][0] = -prices[0]
    
    for i := 1; i < n; i++ {
        dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]))
        dp[i][1] = max(dp[i - 1][1], dp[i - 1][3])
        dp[i][2] = dp[i - 1][0] + prices[i]
        dp[i][3] = dp[i - 1][2]
    }
    
    return max(dp[n - 1][1], max(dp[n - 1][2], dp[n - 1][3]))
}

func max(a, b int) int {
    if a > b {
        return a
    }
    return b
}

Javascript:

const maxProfit = (prices) => {
    if(prices.length < 2) {
        return 0
    } else if(prices.length < 3) {
        return Math.max(0, prices[1] - prices[0]);
    }

    let dp = Array.from(Array(prices.length), () => Array(4).fill(0));
    dp[0][0] = 0 - prices[0];

    for(i = 1; i < prices.length; i++) {
        dp[i][0] = Math.max(dp[i - 1][0], Math.max(dp[i-1][1], dp[i-1][3]) - prices[i]);
        dp[i][1] = Math.max(dp[i -1][1], dp[i - 1][3]);
        dp[i][2] = dp[i-1][0] + prices[i];
        dp[i][3] = dp[i-1][2];
    }

    return Math.max(dp[prices.length - 1][1], dp[prices.length - 1][2], dp[prices.length - 1][3]);
};
// 一维数组空间优化
const maxProfit = (prices) => {
  const n = prices.length
  const dp = new Array(4).fill(0)
  dp[0] = -prices[0]
  for (let i = 1; i < n; i ++) {
    const temp = dp[0] // 缓存上一次的状态
    const temp1 = dp[2]
    dp[0] = Math.max(dp[0], Math.max(dp[3] - prices[i], dp[1] - prices[i])) // 持有状态
    dp[1] = Math.max(dp[1], dp[3]) // 今天不操作且不持有股票
    dp[2] = temp + prices[i] // 今天卖出股票
    dp[3] = temp1 // 冷冻期
  }
  return Math.max(...dp)
};

TypeScript:

版本一,与本文思路一致

function maxProfit(prices: number[]): number {
    /**
        dp[i][0]: 持股状态;
        dp[i][1]: 无股状态,当天为非冷冻期;
        dp[i][2]: 无股状态,当天卖出;
        dp[i][3]: 无股状态,当天为冷冻期;
     */
    const length: number = prices.length;
    const dp: number[][] = new Array(length).fill(0).map(_ => []);
    dp[0][0] = -prices[0];
    dp[0][1] = dp[0][2] = dp[0][3] = 0;
    for (let i = 1; i < length; i++) {
        dp[i][0] = Math.max(
            dp[i - 1][0],
            Math.max(dp[i - 1][1], dp[i - 1][3]) - prices[i]
        );
        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][3]);
        dp[i][2] = dp[i - 1][0] + prices[i];
        dp[i][3] = dp[i - 1][2];
    }
    const lastEl: number[] = dp[length - 1];
    return Math.max(lastEl[1], lastEl[2], lastEl[3]);
};

版本二,状态定义略有不同,可以帮助理解

function maxProfit(prices: number[]): number {
    /**
        dp[i][0]: 持股状态,当天买入;
        dp[i][1]: 持股状态,当天未买入;
        dp[i][2]: 无股状态,当天卖出;
        dp[i][3]: 无股状态,当天未卖出;
        
        买入有冷冻期限制,其实就是状态[0]只能由前一天的状态[3]得到;
        如果卖出有冷冻期限制,其实就是[2]由[1]得到。
     */
    const length: number = prices.length;
    const dp: number[][] = new Array(length).fill(0).map(_ => []);
    dp[0][0] = -prices[0];
    dp[0][1] = -Infinity;
    dp[0][2] = dp[0][3] = 0;
    for (let i = 1; i < length; i++) {
        dp[i][0] = dp[i - 1][3] - prices[i];
        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0]);
        dp[i][2] = Math.max(dp[i - 1][0], dp[i - 1][1]) + prices[i];
        dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2]);
    }
    return Math.max(dp[length - 1][2], dp[length - 1][3]);
};