-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexport_onnx.py
30 lines (26 loc) · 1.43 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import onnx
import torch
from effnetv2 import effnetv2_s
from onnxsim import simplify
import argparse
import torch.nn as nn
def main(model_path, output_path, input_shape=(224, 224), batch_size=1):
model = effnetv2_s(num_classes=2)
checkpoint = torch.load(model_path)['state_dict']
checkpoint = {k.replace('module.', ''): v for k, v in checkpoint.items()}
model.load_state_dict(checkpoint)
dummy_input = torch.autograd.Variable(torch.randn(batch_size, 3, input_shape[0], input_shape[1]))
torch.onnx.export(model, dummy_input, output_path, verbose=True, keep_initializers_as_inputs=True, opset_version=12)
onnx_model = onnx.load(output_path) # load onnx model
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, output_path)
print('finished exporting onnx ')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights_file', type=str, default='./model_best.pth.tar', help='weights file path')
parser.add_argument('--output_file', type=str, default='./effnetv2.onnx', help='onnx file path')
parser.add_argument('--img_size', nargs='+', type=int, default=[224, 224], help='image size')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
opt = parser.parse_args()
main(opt.weights_file, opt.output_file, input_shape=opt.img_size, batch_size=opt.batch_size)