forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.js
257 lines (233 loc) · 9.13 KB
/
train.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const fs = require('fs');
const path = require('path');
const argparse = require('argparse');
const canvas = require('canvas');
const tf = require('@tensorflow/tfjs');
const synthesizer = require('./synthetic_images');
const CANVAS_SIZE = 224; // Matches the input size of MobileNet.
// Name prefixes of layers that will be unfrozen during fine-tuning.
const topLayerGroupNames = ['conv_pw_9', 'conv_pw_10', 'conv_pw_11'];
// Name of the layer that will become the top layer of the truncated base.
const topLayerName =
`${topLayerGroupNames[topLayerGroupNames.length - 1]}_relu`;
// Used to scale the first column (0-1 shape indicator) of `yTrue`
// in order to ensure balanced contributions to the final loss value
// from shape and bounding-box predictions.
const LABEL_MULTIPLIER = [CANVAS_SIZE, 1, 1, 1, 1];
/**
* Custom loss function for object detection.
*
* The loss function is a sum of two losses
* - shape-class loss, computed as binaryCrossentropy and scaled by
* `classLossMultiplier` to match the scale of the bounding-box loss
* approximatey.
* - bounding-box loss, computed as the meanSquaredError between the
* true and predicted bounding boxes.
* @param {tf.Tensor} yTrue True labels. Shape: [batchSize, 5].
* The first column is a 0-1 indicator for whether the shape is a triangle
* (0) or a rectangle (1). The remaining for columns are the bounding boxes
* for the target shape: [left, right, top, bottom], in unit of pixels.
* The bounding box values are in the range [0, CANVAS_SIZE).
* @param {tf.Tensor} yPred Predicted labels. Shape: the same as `yTrue`.
* @return {tf.Tensor} Loss scalar.
*/
function customLossFunction(yTrue, yPred) {
return tf.tidy(() => {
// Scale the the first column (0-1 shape indicator) of `yTrue` in order
// to ensure balanced contributions to the final loss value
// from shape and bounding-box predictions.
return tf.metrics.meanSquaredError(yTrue.mul(LABEL_MULTIPLIER), yPred);
});
}
/**
* Loads MobileNet, removes the top part, and freeze all the layers.
*
* The top removal and layer freezing are preparation for transfer learning.
*
* Also gets handles to the layers that will be unfrozen during the fine-tuning
* phase of the training.
*
* @return {tf.Model} The truncated MobileNet, with all layers frozen.
*/
async function loadTruncatedBase() {
// TODO(cais): Add unit test.
const mobilenet = await tf.loadLayersModel(
'https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json');
// Return a model that outputs an internal activation.
const fineTuningLayers = [];
const layer = mobilenet.getLayer(topLayerName);
const truncatedBase =
tf.model({inputs: mobilenet.inputs, outputs: layer.output});
// Freeze the model's layers.
for (const layer of truncatedBase.layers) {
layer.trainable = false;
for (const groupName of topLayerGroupNames) {
if (layer.name.indexOf(groupName) === 0) {
fineTuningLayers.push(layer);
break;
}
}
}
tf.util.assert(
fineTuningLayers.length > 1,
`Did not find any layers that match the prefixes ${topLayerGroupNames}`);
return {truncatedBase, fineTuningLayers};
}
/**
* Build a new head (i.e., output sub-model) that will be connected to
* the top of the truncated base for object detection.
*
* @param {tf.Shape} inputShape Input shape of the new model.
* @returns {tf.Model} The new head model.
*/
function buildNewHead(inputShape) {
const newHead = tf.sequential();
newHead.add(tf.layers.flatten({inputShape}));
newHead.add(tf.layers.dense({units: 200, activation: 'relu'}));
// Five output units:
// - The first is a shape indictor: predicts whether the target
// shape is a triangle or a rectangle.
// - The remaining four units are for bounding-box prediction:
// [left, right, top, bottom] in the unit of pixels.
newHead.add(tf.layers.dense({units: 5}));
return newHead;
}
/**
* Builds object-detection model from MobileNet.
*
* @returns {[tf.Model, tf.layers.Layer[]]}
* 1. The newly-built model for simple object detection.
* 2. The layers that can be unfrozen during fine-tuning.
*/
async function buildObjectDetectionModel() {
const {truncatedBase, fineTuningLayers} = await loadTruncatedBase();
// Build the new head model.
const newHead = buildNewHead(truncatedBase.outputs[0].shape.slice(1));
const newOutput = newHead.apply(truncatedBase.outputs[0]);
const model = tf.model({inputs: truncatedBase.inputs, outputs: newOutput});
return {model, fineTuningLayers};
}
(async function main() {
// Data-related settings.
const numCircles = 10;
const numLines = 10;
const parser = new argparse.ArgumentParser();
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use tfjs-node-gpu for training (required CUDA and CuDNN)'
});
parser.addArgument(
'--numExamples',
{type: 'int', defaultValue: 2000, help: 'Number of training exapmles'});
parser.addArgument('--validationSplit', {
type: 'float',
defaultValue: 0.15,
help: 'Validation split to be used during training'
});
parser.addArgument('--batchSize', {
type: 'int',
defaultValue: 128,
help: 'Batch size to be used during training'
});
parser.addArgument('--initialTransferEpochs', {
type: 'int',
defaultValue: 100,
help: 'Number of training epochs in the initial transfer ' +
'learning (i.e., 1st) phase'
});
parser.addArgument('--fineTuningEpochs', {
type: 'int',
defaultValue: 100,
help: 'Number of training epochs in the fine-tuning (i.e., 2nd) phase'
});
parser.addArgument('--logDir', {
type: 'string',
help: 'Optional tensorboard log directory, to which the loss ' +
'values will be logged during model training.'
});
parser.addArgument('--logUpdateFreq', {
type: 'string',
defaultValue: 'batch',
optionStrings: ['batch', 'epoch'],
help: 'Frequency at which the loss will be logged to tensorboard.'
});
const args = parser.parseArgs();
let tfn;
if (args.gpu) {
console.log('Training using GPU.');
tfn = require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Training using CPU.');
tfn = require('@tensorflow/tfjs-node');
}
const modelSaveURL = 'file://./dist/object_detection_model';
const tBegin = tf.util.now();
console.log(`Generating ${args.numExamples} training examples...`);
const synthDataCanvas = canvas.createCanvas(CANVAS_SIZE, CANVAS_SIZE);
const synth =
new synthesizer.ObjectDetectionImageSynthesizer(synthDataCanvas, tf);
const {images, targets} =
await synth.generateExampleBatch(args.numExamples, numCircles, numLines);
const {model, fineTuningLayers} = await buildObjectDetectionModel();
model.compile({loss: customLossFunction, optimizer: tf.train.rmsprop(5e-3)});
model.summary();
// Initial phase of transfer learning.
console.log('Phase 1 of 2: initial transfer learning');
await model.fit(images, targets, {
epochs: args.initialTransferEpochs,
batchSize: args.batchSize,
validationSplit: args.validationSplit,
callbacks: args.logDir == null ? null : tfn.node.tensorBoard(args.logDir, {
updateFreq: args.logUpdateFreq
})
});
// Fine-tuning phase of transfer learning.
// Unfreeze layers for fine-tuning.
for (const layer of fineTuningLayers) {
layer.trainable = true;
}
model.compile({loss: customLossFunction, optimizer: tf.train.rmsprop(2e-3)});
model.summary();
// Do fine-tuning.
// The batch size is reduced to avoid CPU/GPU OOM. This has
// to do with the unfreezing of the fine-tuning layers above,
// which leads to higher memory consumption during backpropagation.
console.log('Phase 2 of 2: fine-tuning phase');
await model.fit(images, targets, {
epochs: args.fineTuningEpochs,
batchSize: args.batchSize / 2,
validationSplit: args.validationSplit,
callbacks: args.logDir == null ? null : tfn.node.tensorBoard(args.logDir, {
updateFreq: args.logUpdateFreq
})
});
// Save model.
// First make sure that the base directory dists.
const modelSavePath = modelSaveURL.replace('file://', '');
const dirName = path.dirname(modelSavePath);
if (!fs.existsSync(dirName)) {
fs.mkdirSync(dirName);
}
await model.save(modelSaveURL);
console.log(`Model training took ${(tf.util.now() - tBegin) / 1e3} s`);
console.log(`Trained model is saved to ${modelSaveURL}`);
console.log(
`\nNext, run the following command to test the model in the browser:`);
console.log(`\n yarn watch`);
})();