forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.js
267 lines (249 loc) · 8.66 KB
/
train.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as fs from 'fs';
import * as argparse from 'argparse';
import {mkdir} from 'shelljs';
// The value of tf (TensorFlow.js-Node module) will be set dynamically
// depending on the value of the --gpu flag below.
let tf;
import {SnakeGameAgent} from './agent';
import {copyWeights} from './dqn';
import {SnakeGame} from './snake_game';
class MovingAverager {
constructor(bufferLength) {
this.buffer = [];
for (let i = 0; i < bufferLength; ++i) {
this.buffer.push(null);
}
}
append(x) {
this.buffer.shift();
this.buffer.push(x);
}
average() {
return this.buffer.reduce((x, prev) => x + prev) / this.buffer.length;
}
}
/**
* Train an agent to play the snake game.
*
* @param {SnakeGameAgent} agent The agent to train.
* @param {number} batchSize Batch size for training.
* @param {number} gamma Reward discount rate. Must be a number >= 0 and <= 1.
* @param {number} learnigRate
* @param {number} cumulativeRewardThreshold The threshold of moving-averaged
* cumulative reward from a single game. The training stops as soon as this
* threshold is achieved.
* @param {number} maxNumFrames Maximum number of frames to train for.
* @param {number} syncEveryFrames The frequency at which the weights are copied
* from the online DQN of the agent to the target DQN, in number of frames.
* @param {string} savePath Path to which the online DQN of the agent will be
* saved upon the completion of the training.
* @param {string} logDir Directory to which TensorBoard logs will be written
* during the training. Optional.
*/
export async function train(
agent, batchSize, gamma, learningRate, cumulativeRewardThreshold,
maxNumFrames, syncEveryFrames, savePath, logDir) {
let summaryWriter;
if (logDir != null) {
summaryWriter = tf.node.summaryFileWriter(logDir);
}
for (let i = 0; i < agent.replayBufferSize; ++i) {
agent.playStep();
}
// Moving averager: cumulative reward across 100 most recent 100 episodes.
const rewardAverager100 = new MovingAverager(100);
// Moving averager: fruits eaten across 100 most recent 100 episodes.
const eatenAverager100 = new MovingAverager(100);
const optimizer = tf.train.adam(learningRate);
let tPrev = new Date().getTime();
let frameCountPrev = agent.frameCount;
let averageReward100Best = -Infinity;
while (true) {
agent.trainOnReplayBatch(batchSize, gamma, optimizer);
const {cumulativeReward, done, fruitsEaten} = agent.playStep();
if (done) {
const t = new Date().getTime();
const framesPerSecond =
(agent.frameCount - frameCountPrev) / (t - tPrev) * 1e3;
tPrev = t;
frameCountPrev = agent.frameCount;
rewardAverager100.append(cumulativeReward);
eatenAverager100.append(fruitsEaten);
const averageReward100 = rewardAverager100.average();
const averageEaten100 = eatenAverager100.average();
console.log(
`Frame #${agent.frameCount}: ` +
`cumulativeReward100=${averageReward100.toFixed(1)}; ` +
`eaten100=${averageEaten100.toFixed(2)} ` +
`(epsilon=${agent.epsilon.toFixed(3)}) ` +
`(${framesPerSecond.toFixed(1)} frames/s)`);
if (summaryWriter != null) {
summaryWriter.scalar(
'cumulativeReward100', averageReward100, agent.frameCount);
summaryWriter.scalar('eaten100', averageEaten100, agent.frameCount);
summaryWriter.scalar('epsilon', agent.epsilon, agent.frameCount);
summaryWriter.scalar(
'framesPerSecond', framesPerSecond, agent.frameCount);
}
if (averageReward100 >= cumulativeRewardThreshold ||
agent.frameCount >= maxNumFrames) {
// TODO(cais): Save online network.
break;
}
if (averageReward100 > averageReward100Best) {
averageReward100Best = averageReward100;
if (savePath != null) {
if (!fs.existsSync(savePath)) {
mkdir('-p', savePath);
}
await agent.onlineNetwork.save(`file://${savePath}`);
console.log(`Saved DQN to ${savePath}`);
}
}
}
if (agent.frameCount % syncEveryFrames === 0) {
copyWeights(agent.targetNetwork, agent.onlineNetwork);
console.log('Sync\'ed weights from online network to target network');
}
}
}
export function parseArguments() {
const parser = new argparse.ArgumentParser({
description: 'Training script for a DQN that plays the snake game'
});
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Whether to use tfjs-node-gpu for training ' +
'(requires CUDA GPU, drivers, and libraries).'
});
parser.addArgument('--height', {
type: 'int',
defaultValue: 9,
help: 'Height of the game board.'
});
parser.addArgument('--width', {
type: 'int',
defaultValue: 9,
help: 'Width of the game board.'
});
parser.addArgument('--numFruits', {
type: 'int',
defaultValue: 1,
help: 'Number of fruits present on the board at any given time.'
});
parser.addArgument('--initLen', {
type: 'int',
defaultValue: 2,
help: 'Initial length of the snake, in number of squares.'
});
parser.addArgument('--cumulativeRewardThreshold', {
type: 'float',
defaultValue: 100,
help: 'Threshold for cumulative reward (its moving ' +
'average) over the 100 latest games. Training stops as soon as this ' +
'threshold is reached (or when --maxNumFrames is reached).'
});
parser.addArgument('--maxNumFrames', {
type: 'float',
defaultValue: 1e6,
help: 'Maximum number of frames to run durnig the training. ' +
'Training ends immediately when this frame count is reached.'
});
parser.addArgument('--replayBufferSize', {
type: 'int',
defaultValue: 1e4,
help: 'Length of the replay memory buffer.'
});
parser.addArgument('--epsilonInit', {
type: 'float',
defaultValue: 0.5,
help: 'Initial value of epsilon, used for the epsilon-greedy algorithm.'
});
parser.addArgument('--epsilonFinal', {
type: 'float',
defaultValue: 0.01,
help: 'Final value of epsilon, used for the epsilon-greedy algorithm.'
});
parser.addArgument('--epsilonDecayFrames', {
type: 'int',
defaultValue: 1e5,
help: 'Number of frames of game over which the value of epsilon ' +
'decays from epsilonInit to epsilonFinal'
});
parser.addArgument('--batchSize', {
type: 'int',
defaultValue: 64,
help: 'Batch size for DQN training.'
});
parser.addArgument('--gamma', {
type: 'float',
defaultValue: 0.99,
help: 'Reward discount rate.'
});
parser.addArgument('--learningRate', {
type: 'float',
defaultValue: 1e-3,
help: 'Learning rate for DQN training.'
});
parser.addArgument('--syncEveryFrames', {
type: 'int',
defaultValue: 1e3,
help: 'Frequency at which weights are sync\'ed from the online network ' +
'to the target network.'
});
parser.addArgument('--savePath', {
type: 'string',
defaultValue: './models/dqn',
help: 'File path to which the online DQN will be saved after training.'
});
parser.addArgument('--logDir', {
type: 'string',
defaultValue: null,
help: 'Path to the directory for writing TensorBoard logs in.'
});
return parser.parseArgs();
}
async function main() {
const args = parseArguments();
if (args.gpu) {
tf = require('@tensorflow/tfjs-node-gpu');
} else {
tf = require('@tensorflow/tfjs-node');
}
console.log(`args: ${JSON.stringify(args, null, 2)}`);
const game = new SnakeGame({
height: args.height,
width: args.width,
numFruits: args.numFruits,
initLen: args.initLen
});
const agent = new SnakeGameAgent(game, {
replayBufferSize: args.replayBufferSize,
epsilonInit: args.epsilonInit,
epsilonFinal: args.epsilonFinal,
epsilonDecayFrames: args.epsilonDecayFrames
});
await train(
agent, args.batchSize, args.gamma, args.learningRate,
args.cumulativeRewardThreshold, args.maxNumFrames,
args.syncEveryFrames, args.savePath, args.logDir);
}
if (require.main === module) {
main();
}