forked from mj8ac/trt-yolo-app_win64
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo.h
181 lines (162 loc) · 6.45 KB
/
yolo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/**
MIT License
Copyright (c) 2018 NVIDIA CORPORATION. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*
*/
#ifndef _YOLO_H_
#define _YOLO_H_
#include "calibrator.h"
#include "plugin_factory.h"
#include "trt_utils.h"
#include "NvInfer.h"
#include <stdint.h>
#include <string>
#include <vector>
/**
* Holds all the file paths required to build a network.
*/
struct NetworkInfo
{
std::string networkType;
std::string configFilePath;
std::string wtsFilePath;
std::string labelsFilePath;
std::string precision;
std::string deviceType;
std::string calibrationTablePath;
std::string enginePath;
std::string inputBlobName;
};
/**
* Holds information about runtime inference params.
*/
struct InferParams
{
bool printPerfInfo;
bool printPredictionInfo;
std::string calibImages;
std::string calibImagesPath;
float probThresh;
float nmsThresh;
};
/**
* Holds information about an output tensor of the yolo network.
*/
struct TensorInfo
{
std::string blobName;
uint32_t stride{0};
uint32_t gridSize{0};
uint32_t numClasses{0};
uint32_t numBBoxes{0};
uint64_t volume{0};
std::vector<uint32_t> masks;
std::vector<float> anchors;
int bindingIndex{-1};
float* hostBuffer{nullptr};
};
class Yolo
{
public:
std::string getNetworkType() const { return m_NetworkType; }
float getNMSThresh() const { return m_NMSThresh; }
std::string getClassName(const int& label) const { return m_ClassNames.at(label); }
int getClassId(const int& label) const { return m_ClassIds.at(label); }
uint32_t getInputH() const { return m_InputH; }
uint32_t getInputW() const { return m_InputW; }
uint32_t getNumClasses() const { return m_ClassNames.size(); }
bool isPrintPredictions() const { return m_PrintPredictions; }
bool isPrintPerfInfo() const { return m_PrintPerfInfo; }
void doInference(const unsigned char* input, const uint32_t batchSize);
std::vector<BBoxInfo> decodeDetections(const int& imageIdx, const int& imageH,
const int& imageW);
virtual ~Yolo();
protected:
Yolo(const uint32_t batchSize, const NetworkInfo& networkInfo, const InferParams& inferParams);
std::string m_EnginePath;
const std::string m_NetworkType;
const std::string m_ConfigFilePath;
const std::string m_WtsFilePath;
const std::string m_LabelsFilePath;
const std::string m_Precision;
const std::string m_DeviceType;
const std::string m_CalibImages;
const std::string m_CalibImagesFilePath;
std::string m_CalibTableFilePath;
const std::string m_InputBlobName;
std::vector<TensorInfo> m_OutputTensors;
std::vector<std::map<std::string, std::string>> m_configBlocks;
uint32_t m_InputH;
uint32_t m_InputW;
uint32_t m_InputC;
uint64_t m_InputSize;
const float m_ProbThresh;
const float m_NMSThresh;
std::vector<std::string> m_ClassNames;
// Class ids for coco benchmarking
const std::vector<int> m_ClassIds{
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90};
const bool m_PrintPerfInfo;
const bool m_PrintPredictions;
Logger m_Logger;
// TRT specific members
const uint32_t m_BatchSize;
nvinfer1::INetworkDefinition* m_Network;
nvinfer1::IBuilder* m_Builder;
nvinfer1::IHostMemory* m_ModelStream;
nvinfer1::ICudaEngine* m_Engine;
nvinfer1::IExecutionContext* m_Context;
std::vector<void*> m_DeviceBuffers;
int m_InputBindingIndex;
cudaStream_t m_CudaStream;
PluginFactory* m_PluginFactory;
std::unique_ptr<YoloTinyMaxpoolPaddingFormula> m_TinyMaxpoolPaddingFormula;
virtual std::vector<BBoxInfo> decodeTensor(const int imageIdx, const int imageH,
const int imageW, const TensorInfo& tensor)
= 0;
inline void addBBoxProposal(const float bx, const float by, const float bw, const float bh,
const uint32_t stride, const float scalingFactor, const float xOffset,
const float yOffset, const int maxIndex, const float maxProb,
std::vector<BBoxInfo>& binfo)
{
BBoxInfo bbi;
bbi.box = convertBBoxNetRes(bx, by, bw, bh, stride, m_InputW, m_InputH);
if ((bbi.box.x1 > bbi.box.x2) || (bbi.box.y1 > bbi.box.y2))
{
return;
}
convertBBoxImgRes(scalingFactor, xOffset, yOffset, bbi.box);
bbi.label = maxIndex;
bbi.prob = maxProb;
bbi.classId = getClassId(maxIndex);
binfo.push_back(bbi);
};
private:
void createYOLOEngine(const nvinfer1::DataType dataType = nvinfer1::DataType::kFLOAT,
Int8EntropyCalibrator* calibrator = nullptr);
std::vector<std::map<std::string, std::string>> parseConfigFile(const std::string cfgFilePath);
void parseConfigBlocks();
void allocateBuffers();
bool verifyYoloEngine();
void destroyNetworkUtils(std::vector<nvinfer1::Weights>& trtWeights);
void writePlanFileToDisk();
};
#endif // _YOLO_H_