-
Notifications
You must be signed in to change notification settings - Fork 0
/
sPSOGA.m
197 lines (184 loc) · 4.9 KB
/
sPSOGA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
function result = sPSOGA(feat,label,opts)
%% Parameters settings
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
% Parameters of GA
CR = 0.8; % crossover rate
MR = 0.01; % mutation rate
if isfield(opts,'CR'), CR = opts.CR; end
if isfield(opts,'MR'), MR = opts.MR; end
% Parameters of PSO
lb = 0;
ub = 1;
thres = 0.5;
c1 = 2; % cognitive factor
c2 = 2; % social factor
w = 0.9; % inertia weight
Vmax = (ub - lb) / 2; % Maximum velocity
if isfield(opts,'c1'), c1 = opts.c1; end
if isfield(opts,'c2'), c2 = opts.c2; end
if isfield(opts,'w'), w = opts.w; end
if isfield(opts,'Vmax'), Vmax = opts.Vmax; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @maxFitness;
% Number of dimensions
dim = 52;
%% Initial
% Number of solutions in GA and PSO
halfN = N / 2;
X = Initialization(N,dim);
V = zeros(halfN,dim);
% Fitness
fit = zeros(1,N);
% Evaluate
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres));
end
% Select the halfN best solution
[fit,idx] = sort(fit, 'descend');
X_PSO = X(idx(1:halfN),:);
fit_PSO = fit(1:halfN);
% Pbest
fitP = fit_PSO;
Xpb = X_PSO;
% Gbest update
fitG = fitP(1);
Xgb = Xpb(1,:);
%% Pre
curve = - inf;
curve(1) = fitG;
t = 2;
%% Iterations
while t <= max_Iter
% Part of PSO
for i = 1:halfN
for d = 1:dim
r1 = rand();
r2 = rand();
% Velocity update (2a)
VB = w * V(i,d) + c1 * r1 * (Xpb(i,d) - X_PSO(i,d)) + ...
c2 * r2 * (Xgb(d) - X_PSO(i,d));
% Velocity limit
VB(VB > Vmax) = Vmax; VB(VB < -Vmax) = -Vmax;
V(i,d) = VB;
% Position update (2b)
X_PSO(i,d) = X_PSO(i,d) + V(i,d);
end
% Boundary
XB = X_PSO(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
X_PSO(i,:) = XB;
% Fitness
fit_PSO(i) = fun(feat,label,(X_PSO(i,:) > thres));
% Pbest update
if fit_PSO(i) > fitP(i)
fitP(i) = fit_PSO(i);
Xpb(i,:) = X_PSO(i,:);
end
% Gbest update
if fitP(i) > fitG
fitG = fitP(i);
Xgb = Xpb(i,:);
end
end
% Part of GA
% Preparation
Xc1 = zeros(1,dim);
Xc2 = zeros(1,dim);
fitC1 = ones(1,1);
fitC2 = ones(1,1);
z = 1;
for i = 1:halfN
if rand() < CR
% Select two parents
k1 = TournamentSelection(fitP);
k2 = TournamentSelection(fitP);
% Store parents
P1 = Xpb(k1,:);
P2 = Xpb(k2,:);
% Single point crossover
ind = randi([1,dim - 1]);
% Crossover between two parents
Xc1(z,:) = [P1(1:ind),P2(ind + 1:dim)];
Xc2(z,:) = [P2(1:ind),P1(ind + 1:dim)];
% Mutation
for d = 1:dim
% First child
if rand() < MR
Xc1(z,d) = rand();
end
% Second child
if rand() < MR
Xc2(z,d) = rand();
end
end
% Fitness
fitC1(z) = fun(feat,label,(Xc1(z,:) > thres));
fitC2(z) = fun(feat,label,(Xc2(z,:) > thres));
z = z + 1;
end
end
% Merge population
XX = [Xpb; Xc1; Xc2];
FF = [fitP,fitC1,fitC2];
% Select halfN best solution
[FF,idx] = sort(FF, 'descend');
X_PSO = XX(idx(1:halfN),:);
fit_PSO = FF(1:halfN);
% Pbest update
for i = 1:halfN
if fit_PSO(i) > fitP(i)
fitP(i) = fit_PSO(i);
Xpb(i,:) = X_PSO(i,:);
end
end
% Gbest update
for i = 1:halfN
if fitP(i) > fitG
fitG = fitP(i);
Xgb = Xpb(i,:);
end
end
% Save
curve(t) = fitG;
fprintf('\nGeneration %d Best (sPSOGA)= %.2f\n',t,curve(t))
% Stop the loop if fitG is not updated for 30 iterations
if t > 30 && t <= max_Iter && abs( curve(t) - curve(t - 30) ) <= 10^(-4)
break
end
t = t + 1;
end
delete(gcp('nocreate')); % Closing parallel pool
% Select features based on selected index
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
% sFeat = feat(:,Sf);
% Store results
result.sf = Sf;
% result.ff = sFeat;
% result.nf = length(Sf);
result.c = curve;
% result.f = feat;
% result.l = label;
end
%% Initialization function
function X = Initialization(N,dim)
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = rand();
end
end
end
%% TournamentSelection function
function k = TournamentSelection(fit)
N = length(fit);
idx = randperm(N,2);
idx1 = idx(1);
idx2 = idx(2);
if fit(idx1) >= fit(idx2)
k = idx1;
else
k = idx2;
end
end