-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_trainer.sh
223 lines (205 loc) · 7.14 KB
/
run_trainer.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (C) 2024 Xiaomi Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#
export HF_DATASETS_CACHE="./hf-cache/datasets"
set -e
help() {
echo "Usage:"
echo " -a A: [A] MHA inter dim. Will override sparsity"
echo " -b B: [B] samples in a micro batch size"
echo " -d D: [D] dataset_owner/dataset_name"
echo " -f F: [F] MLP inter dim. Will override sparsity"
echo " -g G: [G] samples in a global batch"
echo " -k K: [K] steps for pruning"
echo " -h: display help"
echo " -l L: [L] training length"
echo " -m M: select mode from [prune|ft|all]"
echo " -n N: [N] eval samples"
echo " -p P: select mode from [acts|taylor]"
echo " -s S: [S]% sparsity"
echo " -t T: [T]B tokens to use in total"
echo " -x X -y Y -z Z: [X]/[Y]/[Z] model_type/model/model_size"
}
prune() {
micro_bsz=1
global_bsz=64
grad_accu=$(($global_bsz / $micro_bsz / $n_gpu))
max_steps=$(($1 / (${train_seqlen} * ${micro_bsz} * ${n_gpu} * ${grad_accu})))
accelerate launch --config_file train_config.yaml \
--main_process_port 28571 \
-m training.run_clm_prune \
--ddp_timeout 3600 \
--model_name_or_path ${model_name_or_path} \
--model_type ${model_type} \
--dataset_name ${dataset_name_or_path} \
--block_size ${train_seqlen} \
--dataloader_num_workers 2 \
--do_train \
--do_eval \
--do_prune \
--max_steps ${max_steps} \
--max_eval_samples ${eval_samples} \
--bf16 True \
--optim adamw_torch_fused \
--adam_beta1 0.9 \
--adam_beta2 0.95 \
--learning_rate ${current_lr} \
--warmup_ratio 0.1 \
--per_device_train_batch_size ${micro_bsz} \
--per_device_eval_batch_size ${micro_bsz} \
--gradient_accumulation_steps ${grad_accu} \
--prune_mode ${prune_mode} \
--prune_head_num True \
--prune_head_dim False \
--target_mha_dim ${target_mha_dim} \
--target_mlp_dim ${target_mlp_dim} \
--prune_shots ${prune_shots} \
--current_shot ${current_shot} \
--save_steps 0 \
--overwrite_output_dir \
--output_dir ${output_dir}
}
finetune() {
output_dir="${output_dir_base}/ft_${ft_tokens_B}Btokens"
save_steps=0.1
micro_bsz=$ft_micro_batch
global_bsz=$ft_global_bsz
grad_accu=$(($global_bsz / $micro_bsz / $n_gpu))
max_steps=$(($1 / (${train_seqlen} * ${micro_bsz} * ${n_gpu} * ${grad_accu})))
accelerate launch --config_file train_config.yaml \
--main_process_port 28571 \
-m training.run_clm_prune \
--ddp_timeout 3600 \
--model_name_or_path ${model_name_or_path} \
--model_type ${model_type} \
--dataset_name ${dataset_name_or_path} \
--block_size ${train_seqlen} \
--dataloader_num_workers 2 \
--do_train \
--max_steps ${max_steps} \
--bf16 True \
--optim adamw_torch_fused \
--adam_beta1 0.9 \
--adam_beta2 0.95 \
--learning_rate ${current_lr} \
--warmup_ratio 0.1 \
--per_device_train_batch_size ${micro_bsz} \
--gradient_accumulation_steps ${grad_accu} \
--save_steps ${save_steps} \
--output_dir ${output_dir}
}
if [ "$1" = "-h" ] || [ "$1" = "--help" ]; then
help
exit 0
fi
# default
target_mha_dim=2048
ft_micro_batch=2
dataset_name=togethercomputer/RedPajama-Data-1T
target_mlp_dim=3072
ft_global_bsz=64
train_seqlen=4096
mode=all
eval_samples=128
prune_mode=acts
prune_shots=8
sparsity=62
ft_tokens_B=50
model_type=llama
model=llama2
model_size=7B
n_gpu=8
lr=5 # e-5
initial_mha_dim=4096
initial_mlp_dim=11008
while getopts a:b:d:f:g:k:l:m:n:p:s:t:x:y:z: flag; do
case "${flag}" in
a) target_mha_dim=${OPTARG} ;;
b) ft_micro_batch=${OPTARG} ;;
d) dataset_name=${OPTARG} ;;
f) target_mlp_dim=${OPTARG} ;;
g) ft_global_bsz=${OPTARG} ;;
k) prune_shots=${OPTARG} ;;
l) train_seqlen=${OPTARG} ;;
m) mode=${OPTARG} ;;
n) eval_samples=${OPTARG} ;;
p) prune_mode=${OPTARG} ;;
s) sparsity=${OPTARG} ;; # sparsity%
t) ft_tokens_B=${OPTARG} ;;
x) model_type=${OPTARG} ;;
y) model=${OPTARG} ;;
z) model_size=${OPTARG} ;;
esac
done
dataset_root="./data"
dataset_name_or_path="${dataset_root}/${dataset_name}"
if [ "${prune_shots}" = 1 ]; then
prune_tokens=0 # 1-shot pruning without any training
else
prune_tokens=$((1 * 1000 * 1000 * 1000 / ${prune_shots})) # tokens in a pruning step
fi
ft_tokens=$((${ft_tokens_B} * 1000 * 1000 * 1000)) # tokens in finetuning
if [ -z "$target_mha_dim" ]; then
target_mha_dim=$((${initial_mha_dim} * (100 - ${sparsity}) / 100))
fi
if [ -z "$target_mlp_dim" ]; then
target_mlp_dim=$((${initial_mlp_dim} * (100 - ${sparsity}) / 100))
fi
model_name_or_path="./models/${model}/${model_size}"
output_dir_base="./outputs/${model}-${model_size}_${dataset_name}/${train_seqlen}len_${target_mha_dim}a_${target_mlp_dim}f_${prune_shots}shots_${eval_samples}samples-${prune_mode}"
echo "=============================="
echo "Mode: ${mode}"
echo "Model: ${model_name_or_path}"
echo "N_GPU: ${n_gpu}"
echo "Finetune global-batch: ${ft_global_bsz}"
echo "Finetune micro-batch: ${ft_micro_batch}"
echo "=============================="
echo "Length: ${train_seqlen}"
echo "Eval samples: ${eval_samples}"
echo "Prune Mode: ${prune_mode}"
echo "Prune Dataset: ${dataset_name_or_path}"
echo "Prune tokens: 1B"
echo "Finetune Dataset: ${dataset_name_or_path}"
echo "Finetune tokens: ${ft_tokens}"
echo "=============================="
echo "Sparsity: ${sparsity}%"
echo "Target MHA: ${target_mha_dim}"
echo "Target MLP: ${target_mlp_dim}"
echo "=============================="
if [ "${prune_shots}" = "2" ]; then
output_dir="${output_dir_base}/step1"
current_shot=1
current_lr=$(echo "scale=7; ${lr} * 2 * 1 / ${prune_shots} / 100000" | bc)
prune ${prune_tokens}
model_name_or_path=$output_dir
output_dir="${output_dir_base}/step2"
current_shot=1
current_lr=0
prune 0
model_name_or_path=$output_dir
else
for ((i = 1; i <= ${prune_shots}; i++)); do
output_dir="${output_dir_base}/step${i}"
current_shot=$i
current_lr=$(echo "scale=7; ${lr} * 2 * ${i} / ${prune_shots} / 100000" | bc)
if [ "$mode" = "prune" ] || [ "$mode" = "all" ]; then
prune $((${prune_tokens} / 2 + ${prune_tokens} * ($i - 1) / (${prune_shots} - 1)))
fi
model_name_or_path=$output_dir
done
fi
model_name_or_path="${output_dir_base}/step${prune_shots}"
if [ "$mode" = "ft" ] || [ "$mode" = "all" ]; then
current_lr=$(echo "scale=7; ${lr} / 100000" | bc)
finetune ${ft_tokens}
fi