-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_nodeTree_count1.cpp
77 lines (69 loc) · 2.36 KB
/
binary_nodeTree_count1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*
给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树
的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第
h 层,则该层包含 1~ 2h 个节点。
*/
// 解题思路:
// 根据完全二叉树的性质可知,左子树的深度l_depth永远为当前节点的深度减一,
// 如果左子树的深度等于右子树的深度,那说明左子树为满二叉树,拥有2^l_depth个节点;
// 如果左子树的深度不等于右子树的深度,那说明右子树为满二叉树,2^r_depth个节点;
// 先计算整棵树的深度,同时也得到了左子树的深度,再计算右子树的深度,判断左右子树深度是否相等,即可得到一半满二叉树的节点个数,然后递归求另一半二叉树。
#include <climits>
#include <functional>
#include <iostream>
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr){};
TreeNode(int x) : val(x), left(nullptr), right(nullptr){};
TreeNode(int x, TreeNode *left, TreeNode *right)
: val(x), left(left), right(right){};
~TreeNode()
{
delete left;
delete right;
}
};
int countNodes(TreeNode *root)
{
std::function< int(TreeNode *) > count_depth = [](TreeNode *root)
{
int depth{};
while (root != nullptr)
{
root = root->left;
++depth;
}
return depth;
};
std::function< int(TreeNode *, int) > count_nums =
[&](TreeNode *root, int l_depth)
{
if (root == nullptr)
{
return 0;
}
int r_depth = count_depth(root->right);
if (l_depth == r_depth)
{
return (1 << l_depth) + count_nums(root->right, r_depth - 1);
}
return (1 << r_depth) + count_nums(root->left, l_depth - 1);
};
int depth = count_depth(root);
int ans = count_nums(root, depth - 1);
return ans;
}
int main(int argc, char const *argv[])
{
TreeNode *root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
root->left->left = new TreeNode(4);
cout << countNodes(root);
return 0;
}