-
Notifications
You must be signed in to change notification settings - Fork 0
/
lambadaskip.py
1007 lines (760 loc) · 38.5 KB
/
lambadaskip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
from __future__ import absolute_import, division, print_function, unicode_literals
from comet_ml import Experiment
import argparse
import logging
import os
from pathlib import Path
import random
from io import open
import pickle
import math
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from lambadatest import LambadaTest
from modeling import BertForMaskedLM, BertConfig, BertForMaskedLMUt, UTafterBert, TDNCafterBert
from tokenization import BertTokenizer
from optimization import BertAdam, warmup_linear
import random
import tarfile
import requests
experiment = Experiment(api_key="zMVSRiUzF89hdX5u7uWrSW5og",
project_name="general", workspace="xirider")
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
_CURPATH = Path.cwd()
_TMPDIR = _CURPATH / "labada_data_intermediate"
_TRAINDIR = _TMPDIR / "train-novels"
_TESTFILE = "lambada_development_plain_text.txt"
_DATADIR = _CURPATH / "labada_data"
_TAR = "lambada-dataset.tar.gz"
_URL = "http://clic.cimec.unitn.it/lambada/" + _TAR
_MODELS = _CURPATH / "models"
_EMA_ALPHA = 0.025
def maybe_download(directory, filename, uri):
filepath = os.path.join(directory, filename)
if not os.path.exists(directory):
logger.info(f"Creating new dir: {directory}")
os.makedirs(directory)
if not os.path.exists(filepath):
logger.info("Downloading und unpacking file, as file does not exist yet")
r = requests.get(uri, allow_redirects=True)
open(filepath, "wb").write(r.content)
return filepath
def _prepare_lambada_data(tmp_dir, data_dir):
file_path = maybe_download(tmp_dir, _TAR, _URL)
tar_all = tarfile.open(file_path)
tar_all.extractall(tmp_dir)
tar_all.close()
tar_train = tarfile.open(os.path.join(tmp_dir, "train-novels.tar"))
tar_train.extractall(tmp_dir)
tar_train.close()
return None
class LambadaTrain(Dataset):
def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, rebuild=True, creation_length =128, short_factor = 1):
self.vocab = tokenizer.vocab
self.tokenizer = tokenizer
self.seq_len = seq_len
self.corpus_lines = corpus_lines # number of non-empty lines in input corpus
self.corpus_path = corpus_path
self.encoding = encoding
self.current_doc = 0 # to avoid random sentence from same doc
self.creation_length = creation_length
# for loading samples directly from file
self.sample_counter = 0 # used to keep track of full epochs on file
self.line_buffer = None # keep second sentence of a pair in memory and use as first sentence in next pair
# for loading samples in memory
self.current_random_doc = 0
self.num_docs = 0
self.short_factor = short_factor
if rebuild:
self.docs = []
skipcounter = 0
if os.path.exists(self.corpus_path / "build_docs.p"):
os.remove(self.corpus_path / "build_docs.p")
for subdir in os.listdir(self.corpus_path):
print(subdir)
for files in os.listdir(self.corpus_path / subdir):
with open(self.corpus_path / subdir / files , "r", encoding=encoding) as f:
interdoc = ""
for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
interdoc += line
if len(interdoc.split()) >= self.creation_length:
if skipcounter % self.short_factor == 0:
self.docs.append(interdoc)
self.num_docs += 1
interdoc = ""
skipcounter += 1
print("genre done")
pickle.dump(self.docs, open(self.corpus_path / "build_docs.p", "wb"))
print("Saved Dataset with Pickle")
else:
self.docs = pickle.load( open(self.corpus_path / "build_docs.p", "rb"))
print("Loaded Dataset with Pickle")
def __len__(self):
# last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0.
return len(self.docs)
def __getitem__(self, item):
cur_id = self.sample_counter
self.sample_counter += 1
t1 = self.docs[item]
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
# transform sample to features
cur_features = convert_example_to_features(tokens_a, self.sample_counter, self.seq_len, self.tokenizer)
cur_tensors = (torch.tensor(cur_features.input_ids),
torch.tensor(cur_features.input_mask),
torch.tensor(cur_features.segment_ids),
torch.tensor(cur_features.lm_label_ids),
)
return cur_tensors
class InputExample(object):
"""A single training/test example for the language model."""
def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
tokens_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
tokens_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.tokens_a = tokens_a
self.tokens_b = tokens_b
self.is_next = is_next # nextSentence
self.lm_labels = lm_labels # masked words for language model
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, lm_label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
def convert_example_to_features(example, cur_time, max_seq_length, tokenizer):
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
tokens_a = example
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
tokens_a = truncate_seq_pair(tokens_a, max_seq_length - 2)
tokens_a, t1_label = random_word(tokens_a, tokenizer)
lm_label_ids = ([-1] + t1_label + [-1])
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
# print("input, segment, lmlabel")
# print(len(input_ids))
# print(len(segment_ids))
# print(len(lm_label_ids))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(lm_label_ids) == max_seq_length
if cur_time < 5:
logger.info("*** Example ***")
logger.info("cur_time: %s" % (cur_time))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("LM label: %s " % (lm_label_ids))
features = InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
)
return features
def truncate_seq_pair(tokens_a, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a)
if total_length <= max_length:
break
else:
tokens_a.pop()
return tokens_a
def random_word(tokens, tokenizer):
"""
Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
:param tokens: list of str, tokenized sentence.
:param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
:return: (list of str, list of int), masked tokens and related labels for LM prediction
"""
output_label = []
# changed to always remove 15% of words
for i, token in enumerate(tokens):
prob = random.random()
# mask token with 15% probability
if prob < 0.15:
prob /= 0.15
tokens[i] = "[MASK]"
# append current token to output (we will predict these later)
try:
output_label.append(tokenizer.vocab[token])
except KeyError:
# For unknown words (should not occur with BPE vocab)
output_label.append(tokenizer.vocab["[UNK]"])
logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token))
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
return tokens, output_label
def load_weights_from_state(model, state_dict):
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
start_prefix = ''
if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
start_prefix = 'bert.'
load(model, prefix=start_prefix)
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
return model
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--bert_model", default="bert-base-uncased", type=str, required=False,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--max_comp_length",
default=256,
type=int,
help="Maximum amount of tokens in the Ut transformer after the DNC reads tokens from memory")
parser.add_argument("--memory_size",
default=512,
type=int,
help="DNC memory size")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--train_batch_size",
default=64,
type=int,
help="Total batch size for training.")
parser.add_argument("--learning_rate",
default=1e-4,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=1.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--on_memory",
action='store_true',
help="Whether to load train samples into memory or use disk")
parser.add_argument("--do_upper_case",
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--direct_write',
action='store_true',
help="whether to directly write the attention tokens to the dnc memory, or first use an linear transformation")
parser.add_argument('--loss_scale',
type = float, default = 0,
help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--inter_results',
type=int,
default=100,
help="how often to give the results")
parser.add_argument('--short_factor',
type=int,
default=1,
help="divide training set length by factor")
parser.add_argument("--download",
action='store_true',
help="Whether to download the data again")
parser.add_argument("--rebuild",
action='store_true',
help="whether to process the data again")
parser.add_argument("--model_type", default="bert", type=str, required=False,
help="Instead of google pretrained models use another model")
parser.add_argument("--copy_google_weights",
action='store_true',
help="Whether to copy and save a new version of Bert weights from the google weights")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval")
parser.add_argument('--ut_layers',
type=int,
default=4,
help="layers for ut model")
parser.add_argument("--load_model", default="", type=str, required=False,
help="Load model in corresponding Model folder")
parser.add_argument("--cls_train",
action='store_true',
help="Whether to train the cls layer")
parser.add_argument("--read_gate",
action='store_true',
help="whether to use read gate")
parser.add_argument("--calc_with_read",
action='store_true',
help="whether to use read gate")
parser.add_argument("--tensorboard",
action='store_true',
help="whether to track weights and memories in tensorboard")
parser.add_argument("--read_token_type", default="concat", type=str, required=False,
help="The read tokens can be either concat, added or added and scaled to the original tokens")
parser.add_argument("--resume",
action='store_true',
help="resume from last checkpoint with the same folder name")
args = parser.parse_args()
hyperparams = args.__dict__
experiment.log_parameters(hyperparams)
if args.tensorboard:
from tensorboardX import SummaryWriter
writer = SummaryWriter()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.download and args.do_train:
filename = _prepare_lambada_data(_TMPDIR, _DATADIR)
lower_case = not args.do_upper_case
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case= lower_case)
mask_token_number = tokenizer.vocab["[MASK]"]
# first ist pretrained bert, second is ut following
config = BertConfig(30522)
config2 = BertConfig(30522, num_hidden_layers= args.ut_layers, mask_token_number=mask_token_number,
max_comp_length = args.max_comp_length, memory_size = args.memory_size, direct_write =args.direct_write,
read_gate=args.read_gate, read_token_type=args.read_token_type, calc_with_read=args.calc_with_read)
# to test without ut embeddings: , use_mask_embeddings=False, use_temporal_embeddings=False
num_train_optimization_steps = None
if args.do_train:
train_dataset = LambadaTrain(_TRAINDIR, tokenizer, seq_len = args.max_seq_length, rebuild=args.rebuild, creation_length= args.max_seq_length - 20, short_factor= args.short_factor)
num_train_optimization_steps = int(
len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if args.copy_google_weights:
inter_model = BertForMaskedLM.from_pretrained(args.bert_model)
bert_state_dict = inter_model.bert.state_dict()
cls_state_dict = inter_model.cls.state_dict()
if args.model_type == "TDNCafterBertPretrained":
model = TDNCafterBert(config, config2)
if args.model_type == "UTafterBertPretrained":
model = UTafterBert(config, config2)
# state = model.cls.state_dict()
# for name in state:
# print(name)
# print(state[name])
load_weights_from_state(model.bert, bert_state_dict)
load_weights_from_state(model.cls , cls_state_dict)
if not os.path.exists(_MODELS):
logger.info(f"Creating new dir: {_MODELS}")
os.makedirs(_MODELS)
torch.save(model.state_dict(), _MODELS / "UTafterBertPretrained.pt")
model = False
inter_model = False
bert_state_dict= False
cls_state_dict=False
# prepare model:
if args.model_type == "bert":
model = BertForMaskedLM.from_pretrained(args.bert_model)
model.train()
if args.model_type == "bert_base_untrained":
model = BertForMaskedLM(config)
model.train()
if args.model_type == "bert_base_ut_untrained":
model = BertForMaskedLMUt(config)
model.train()
if args.model_type == "bert_base_ut_after_bert_untrained":
model = UTafterBert(config, config2)
model.train()
if args.model_type == "UTafterBertPretrained":
model = UTafterBert(config, config2)
model.load_state_dict(torch.load(_MODELS / "UTafterBertPretrained.pt"))
model.bert.eval()
model.ut.train()
model.cls.eval()
if args.cls_train:
model.cls.train()
for param in model.bert.parameters():
param.requires_grad = False
if args.model_type == "TDNCafterBertPretrained":
model = TDNCafterBert(config, config2)
model.load_state_dict(torch.load(_MODELS / "UTafterBertPretrained.pt"))
model.bert.eval()
model.ut.train()
model.cls.eval()
if args.cls_train:
model.cls.train()
for param in model.bert.parameters():
param.requires_grad = False
if args.load_model != "":
print("Load model saved model")
model.load_state_dict(torch.load(_MODELS / args.load_model / "pytorch_model.pt"), strict=False)
model.train()
if args.model_type == "UTafterBertPretrained":
model.bert.eval()
model.ut.train()
model.cls.eval()
if args.cls_train:
model.cls.train()
if args.model_type == "TDNCafterBertPretrained":
model.bert.eval()
model.ut.train()
model.cls.eval()
if args.cls_train:
model.cls.train()
if args.resume:
print("IMPORTANT: Loaded from last checkpoint")
model.load_state_dict(torch.load(_MODELS / args.output_dir / "checkpoint.pt"), strict=False)
model.train()
if args.model_type == "UTafterBertPretrained":
model.bert.eval()
model.ut.train()
model.cls.eval()
if args.cls_train:
model.cls.train()
if args.model_type == "TDNCafterBertPretrained":
model.bert.eval()
model.ut.train()
model.cls.eval()
if args.cls_train:
model.cls.train()
if args.fp16:
model.half()
model.to(device)
# if args.local_rank != -1:
# try:
# from apex.parallel import DistributedDataParallel as DDP
# except ImportError:
# raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
# model = DDP(model)
# elif n_gpu > 1:
# model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.model_type == "UTafterBertPretrained" or "TDNCafterBertPretrained":
param_optimizer = list(model.ut.named_parameters())
print("updating only ut part")
if args.cls_train:
param_optimizer.extend(list(model.cls.named_parameters()))
else:
param_optimizer = list(model.named_parameters())
print("updating all parameters")
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
# if args.fp16:
# try:
# from apex.optimizers import FP16_Optimizer
# from apex.optimizers import FusedAdam
# except ImportError:
# raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
# optimizer = FusedAdam(optimizer_grouped_parameters,
# lr=args.learning_rate,
# bias_correction=False,
# max_grad_norm=1.0)
# if args.loss_scale == 0:
# optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
# else:
# optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
# else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
#TODO: check if this works with current data generator from disk that relies on next(file)
# (it doesn't return item back by index)
train_sampler = DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.tensorboard:
model.ut.encoder.layer.inter_results = args.inter_results
model.ut.encoder.layer.tensorboard = writer
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
loss_ema = 0
acc_ema = 0
best_acc_ema = 0
lendata =len(train_dataloader)
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
if step == lendata or step == lendata-1:
break
if args.tensorboard:
model.ut.encoder.layer.outer_steps = step
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids = batch
if step % 2 == 0:
model.ut.create_masks = True
if args.model_type == "UTafterBertPretrained":
_, _ = model(input_ids, segment_ids, input_mask, lm_label_ids)
else:
_, _ = model(input_ids, segment_ids, input_mask, lm_label_ids , reset_memory=True, erase_memory=True)
safed_input_mask = input_mask
safed_lm_label_ids = lm_label_ids
safed_input_ids = input_ids[0]
else:
model.ut.create_masks = False
input_mask = safed_input_mask
lm_label_ids = safed_lm_label_ids
if args.model_type == "UTafterBertPretrained":
loss, predictions = model(input_ids, segment_ids, input_mask, lm_label_ids)
else:
loss, predictions = model(input_ids, segment_ids, input_mask, lm_label_ids, reset_memory=False, erase_memory=False)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
losscpu = loss.item()
print(f"Step {step} loss: {losscpu} ")
experiment.log_metric("loss", losscpu, step = step)
loss_ema = (_EMA_ALPHA * losscpu) + (1.0 - _EMA_ALPHA) * loss_ema
experiment.log_metric("loss_ema", loss_ema , step = step)
tr_loss += losscpu
with torch.no_grad():
maxes = torch.argmax(predictions, 2)
correct_number = (lm_label_ids == maxes).sum()
correct_number = correct_number.item()
totalmasks = (lm_label_ids > 0).sum()
totalmasks = totalmasks.item()
cur_accuracy = correct_number / totalmasks
experiment.log_metric("accuracy", cur_accuracy , step = step)
acc_ema = (_EMA_ALPHA * cur_accuracy) + (1.0 - _EMA_ALPHA) * acc_ema
experiment.log_metric("accuracy_ema", acc_ema , step = step)
if step % args.inter_results == 1:
with torch.no_grad():
predictions = predictions[0]
words = torch.chunk(predictions, predictions.size(0))
words = [torch.argmax(x).item() for x in words]
realwords = tokenizer.convert_ids_to_tokens(words)
print("Real sentences:")
with torch.no_grad():
firstbatch = safed_input_ids
words = firstbatch.tolist()
actualwords = tokenizer.convert_ids_to_tokens(words)
joinedactualwords = " ".join(actualwords)
print(joinedactualwords)
print("Predicted words:")
joinedrealwords = " ".join(realwords)
print(joinedrealwords)
# print("memory of model:")
if args.tensorboard:
for name, param in model.ut.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), step)
# writer.add_histogram(model.ut.encoder.layer.memory_hidden["memory"][0].abs().sum(1))
if args.model_type == "TDNCafterBertPretrained":
print(model.ut.encoder.layer.memory.saved_read_strength[0].mean(0))
print("Softmax distribution over 5 %")
print((model.ut.encoder.layer.memory.saved_read_softmax > 0.05).sum())
print("Softmax distribution over 50 %")
print((model.ut.encoder.layer.memory.saved_read_softmax > 0.5).sum())
print("Softmax distribution over 99 %")
print((model.ut.encoder.layer.memory.saved_read_softmax > 0.99).sum())
print("Softmax distribution over 99,999 %")
print((model.ut.encoder.layer.memory.saved_read_softmax > 0.99999).sum())
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
# if args.fp16:
# # modify learning rate with special warm up BERT uses
# # if args.fp16 is False, BertAdam is used that handles this automatically
# lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
# hyperparams["learning_rate"] = lr_this_step
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
experiment.log_metric("current_lr", optimizer.current_lr , step = step)
global_step += 1
if (step + 1) % 2500 == 0:
if acc_ema > best_acc_ema:
best_acc_ema = acc_ema
if not os.path.exists(_MODELS):
os.makedirs(_MODELS)
if not os.path.exists(_MODELS/ args.output_dir):
os.makedirs( _MODELS / args.output_dir)
output_model_file = os.path.join(_MODELS , args.output_dir, "checkpoint.pt")
torch.save(model.state_dict(), output_model_file)
logger.info(f"Created new checkpoint")
if args.tensorboard:
writer.close()
# Save a trained model
logger.info("** ** * Saving fine - tuned model ** ** * ")
if args.do_train:
if not os.path.exists(_MODELS):
os.makedirs(_MODELS)
if not os.path.exists(_MODELS/ args.output_dir):
os.makedirs( _MODELS / args.output_dir)
output_model_file = os.path.join(_MODELS , args.output_dir, "pytorch_model.pt")
torch.save(model.state_dict(), output_model_file)
logger.info(f"Creating new dir and saving model in: {args.output_dir}")
if args.do_eval:
test_dataset = LambadaTest(_TMPDIR, _TESTFILE, tokenizer, seq_len = args.max_seq_length, rebuild=args.rebuild)
test_sampler = RandomSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.train_batch_size)
model.eval()
with torch.no_grad():
for _ in trange(1, desc="Epoch"):
test_loss = 0
nb_test_examples, nb_test_steps = 0, 0
totalcounteri = 0
total_acc = 0
lentest = len(test_dataloader)
for step, batch in enumerate(tqdm(test_dataloader, desc="Iteration")):
if step == lentest or step == lentest-1:
break
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids = batch
if step % 2 == 0:
model.ut.create_masks = True
_, _ = model(input_ids, segment_ids, input_mask, lm_label_ids, reset_memory=True, erase_memory=True)
safed_input_mask = input_mask
safed_lm_label_ids = lm_label_ids
else:
model.ut.create_masks = False
input_mask = safed_input_mask
lm_label_ids = safed_lm_label_ids
loss, predictions = model(input_ids, segment_ids, input_mask, lm_label_ids, reset_memory=True, erase_memory=True)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
maxes = torch.argmax(predictions, 2)
correct_number = (lm_label_ids == maxes).sum()
correct_number = correct_number.item()
totalmasks = (lm_label_ids > 0).sum()
totalmasks = totalmasks.item()
cur_accuracy = correct_number / totalmasks
total_acc += cur_accuracy
print(f"Current Loss: {loss.item()}")
perpl = math.exp(loss.item())
print(f"Perplexity: {perpl}")
test_loss += loss.item()
nb_test_steps += 1
epochloss = test_loss / nb_test_steps
print(f"Loss for test Data: {epochloss}")
experiment.log_metric("test_loss", epochloss)
perpl = math.exp(epochloss)
print(f"Perplexity for Test Data: {perpl}")
experiment.log_metric("test_perplexity", perpl)
accuracy = total_acc / nb_test_steps
print(f"Accuracy for Test Data: {accuracy}")