-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
327 lines (273 loc) · 13.4 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
import torch.nn.functional as F
import numpy as np
Cityscapes_COLORMAP = [
[0, 0, 0],
[255, 255, 255],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[0, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32],
]
Cityscapes_IDMAP = [
[7],
[8],
[11],
[12],
[13],
[17],
[19],
[20],
[21],
[22],
[23],
[24],
[25],
[26],
[27],
[28],
[31],
[32],
[33],
]
Cityscapes_Class = ["road", "sidewalk", "building", "wall", "fence",
"pole", "traffic light", "traffic sign", "vegetation",
"terrain", "sky", "person", "rider", "car", "truck",
"bus", "train", "motorcycle", "bicyle"]
def label2image(pred, COLORMAP=Cityscapes_COLORMAP):
colormap = np.array(COLORMAP, dtype='uint8')
X = pred.astype('int32')
return colormap[X, :]
def trainid2id(pred, IDMAP=Cityscapes_IDMAP):
colormap = np.array(IDMAP, dtype='uint8')
X = pred.astype('int32')
return colormap[X, :]
@smart_inference_mode()
def run(
weights=ROOT / 'yolo.pt',
source=ROOT / 'data/images',
data=ROOT / 'data/coco.yaml',
imgsz=(640, 640),
conf_thres=0.25,
iou_thres=0.45,
max_det=1000,
device='',
view_img=False,
save_txt=False,
save_conf=False,
save_crop=False,
nosave=False,
classes=None,
agnostic_nms=False,
augment=False,
visualize=False,
update=False,
project=ROOT / 'runs/detect',
name='exp',
exist_ok=False,
line_thickness=3,
hide_labels=False,
hide_conf=False,
half=False,
dnn=False,
vid_stride=1,
save_as_video=False,
submit=False
):
source = str(source)
save_img = not nosave and not source.endswith('.txt')
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source)
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
if opt.submit:
sub_dir = str(save_dir) + "/results/"
if not os.path.exists(sub_dir):
os.mkdir(sub_dir)
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride)
bs = 1
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer, s_writer = None, None, None
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float()
im /= 255
if len(im.shape) == 3:
im = im[None]
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
out = model(im, augment=augment, visualize=visualize)
pred = out[0][0]
seg = out[1]
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
for i, det in enumerate(pred):
seen += 1
if webcam:
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p)
save_path = str(save_dir / p.name)
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')
s += '%gx%g ' % im.shape[2:]
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
imc = im0.copy() if save_crop else im0
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum()
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
for *xyxy, conf, cls in reversed(det):
if save_txt:
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
line = (cls, *xywh, conf) if save_conf else (cls, *xywh)
with open(f'{txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img:
c = int(cls)
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
seg = F.interpolate(seg, (im0.shape[0], im0.shape[1]), mode='bilinear', align_corners=True)[0]
mask = label2image(seg.max(axis=0)[1].cpu().numpy(), Cityscapes_COLORMAP)[:, :, ::-1]
dst = cv2.addWeighted(mask, 0.4, im0, 0.6, 0)
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.imshow("segmentation", mask)
cv2.imshow("mix", dst)
cv2.waitKey(0)
if opt.submit:
sub_path = sub_dir+str(p.name)
sub_path = sub_path[:-4] + "_pred.png"
result = trainid2id(seg.max(axis=0)[1].cpu().numpy(), Cityscapes_IDMAP)
cv2.imwrite(sub_path, result)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
cv2.imwrite(save_path[:-4] + "_mask" + save_path[-4:], mask)
cv2.imwrite(save_path[:-4] + "_dst" + save_path[-4:], dst)
else:
if vid_path[i] != save_path:
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release()
if vid_cap:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else:
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4'))
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(dst)
if opt.save_as_video:
if not s_writer:
fps, w, h = 30, dst.shape[1], dst.shape[0]
s_writer = cv2.VideoWriter(str(save_dir)+"out.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
s_writer.write(dst)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
t = tuple(x.t / seen * 1E3 for x in dt)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if s_writer != None:
s_writer.release()
if update:
strip_optimizer(weights[0])
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / '/home/wuren123/yb/multi task/niou/niou1/runs/train/ce SLSIoULoss55/weights/best.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'figure', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/custom.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='1', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
parser.add_argument('--save-as-video', action='store_true', help='save same size images as a video')
parser.add_argument('--submit', action='store_true', help='get submit file in folder submit')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)