-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper_tool.py
executable file
·391 lines (324 loc) · 15.6 KB
/
helper_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# from open3d import linux as open3d
from os.path import join
import numpy as np
import colorsys, random, os, sys
import pandas as pd
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import utils.cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling
import nearest_neighbors
# ******************************* Config Setting ********************************
class ConfigSemanticKITTI:
k_n = 16 # KNN
num_layers = 4 # Number of layers
num_points = 4096 * 11 # Number of input points
num_classes = 19 # Number of valid classes
sub_grid_size = 0.06 # preprocess_parameter
batch_size = 6 # batch_size during training
val_batch_size = 20 # batch_size during validation and test
train_steps = 500 # Number of steps per epochs
val_steps = 100 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256] # feature dimension
num_sub_points = [num_points // 4, num_points // 16, num_points // 64, num_points // 256]
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
class ConfigS3DIS:
k_n = 16 # KNN
num_layers = 5 # Number of layers
num_points = 40960 # Number of input points
num_classes = 13 # Number of valid classes
sub_grid_size = 0.04 # preprocess_parameter
batch_size = 6 # batch_size during training
val_batch_size = 20 # batch_size during validation and test
train_steps = 500 # Number of steps per epochs
val_steps = 100 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256, 512] # feature dimension
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
class ConfigSemantic3D:
k_n = 16 # KNN
num_layers = 5 # Number of layers
num_points = 65536 # Number of input points
num_classes = 8 # Number of valid classes
sub_grid_size = 0.06 # preprocess_parameter
batch_size = 4 # batch_size during training
val_batch_size = 16 # batch_size during validation and test
train_steps = 500 # Number of steps per epochs
val_steps = 100 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256, 512] # feature dimension
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_occlusion = 'none'
augment_color = 0.8
class ConfigHongKong:
k_n = 16 # KNN
num_layers = 5 # Number of layers
num_points = 65536 # Number of input points
num_classes = 10 # Number of valid classes
sub_grid_size = 0.04 # preprocess_parameter
batch_size = 4 # batch_size during training
val_batch_size = 16 # batch_size during validation and test
train_steps = 600 # Number of steps per epochs
val_steps = 200 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256, 512] # feature dimension
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_occlusion = 'none'
augment_color = 0.8
# ******************************* Data Processing ********************************
class DataProcessing:
@staticmethod
def load_pc_semantic3d(filename):
pc_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.float16)
pc = pc_pd.values
return pc
@staticmethod
def load_label_semantic3d(filename):
label_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.uint8)
cloud_labels = label_pd.values
return cloud_labels
@staticmethod
def load_pc_kitti(pc_path):
scan = np.fromfile(pc_path, dtype=np.float32)
scan = scan.reshape((-1, 4))
points = scan[:, 0:3] # get xyz
return points
@staticmethod
def load_label_kitti(label_path, remap_lut):
label = np.fromfile(label_path, dtype=np.uint32)
label = label.reshape((-1))
sem_label = label & 0xFFFF # semantic label in lower half
inst_label = label >> 16 # instance id in upper half
assert ((sem_label + (inst_label << 16) == label).all())
sem_label = remap_lut[sem_label]
return sem_label.astype(np.int32)
@staticmethod
def get_file_list(dataset_path, test_scan_num):
seq_list = np.sort(os.listdir(dataset_path))
train_file_list = []
test_file_list = []
val_file_list = []
for seq_id in seq_list:
seq_path = join(dataset_path, seq_id)
pc_path = join(seq_path, 'velodyne')
if seq_id == '08':
val_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
if seq_id == test_scan_num:
test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
elif int(seq_id) >= 11 and seq_id == test_scan_num:
test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
elif seq_id in ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']:
train_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
train_file_list = np.concatenate(train_file_list, axis=0)
val_file_list = np.concatenate(val_file_list, axis=0)
if test_scan_num != 'None':
test_file_list = np.concatenate(test_file_list, axis=0)
else:
test_file_list = None
return train_file_list, val_file_list, test_file_list
@staticmethod
def knn_search(support_pts, query_pts, k):
"""
:param support_pts: points you have, B*N1*3 在这些点上搜索
:param query_pts: points you want to know the neighbour index, B*N2*3 以这些点为中心做KNN
:param k: Number of neighbours in knn search
:return: neighbor_idx: neighboring points indexes, B*N2*k
"""
neighbor_idx = nearest_neighbors.knn_batch(support_pts, query_pts, k, omp=True)
return neighbor_idx.astype(np.int32)
@staticmethod
def data_aug(xyz, color, labels, idx, num_out):
num_in = len(xyz)
dup = np.random.choice(num_in, num_out - num_in)
xyz_dup = xyz[dup, ...]
xyz_aug = np.concatenate([xyz, xyz_dup], 0)
color_dup = color[dup, ...]
color_aug = np.concatenate([color, color_dup], 0)
idx_dup = list(range(num_in)) + list(dup)
idx_aug = idx[idx_dup]
label_aug = labels[idx_dup]
return xyz_aug, color_aug, idx_aug, label_aug
@staticmethod
def shuffle_idx(x):
# random shuffle the index
idx = np.arange(len(x))
np.random.shuffle(idx)
return x[idx]
@staticmethod
def shuffle_list(data_list):
indices = np.arange(np.shape(data_list)[0])
np.random.shuffle(indices)
data_list = data_list[indices]
return data_list
@staticmethod
def grid_sub_sampling(points, features=None, labels=None, grid_size=0.1, verbose=0):
"""
CPP wrapper for a grid sub_sampling (method = barycenter for points and features
:param points: (N, 3) matrix of input points
:param features: optional (N, d) matrix of features (floating number)
:param labels: optional (N,) matrix of integer labels
:param grid_size: parameter defining the size of grid voxels
:param verbose: 1 to display
:return: sub_sampled points, with features and/or labels depending of the input
"""
if (features is None) and (labels is None):
return cpp_subsampling.compute(points, sampleDl=grid_size, verbose=verbose)
elif labels is None:
return cpp_subsampling.compute(points, features=features, sampleDl=grid_size, verbose=verbose)
elif features is None:
return cpp_subsampling.compute(points, classes=labels, sampleDl=grid_size, verbose=verbose)
else:
return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=grid_size,
verbose=verbose)
@staticmethod
def IoU_from_confusions(confusions):
"""
Computes IoU from confusion matrices.
:param confusions: ([..., n_c, n_c] np.int32). Can be any dimension, the confusion matrices should be described by
the last axes. n_c = number of classes
:return: ([..., n_c] np.float32) IoU score
"""
# Compute TP, FP, FN. This assume that the second to last axis counts the truths (like the first axis of a
# confusion matrix), and that the last axis counts the predictions (like the second axis of a confusion matrix)
TP = np.diagonal(confusions, axis1=-2, axis2=-1)
TP_plus_FN = np.sum(confusions, axis=-1)
TP_plus_FP = np.sum(confusions, axis=-2)
# Compute IoU
IoU = TP / (TP_plus_FP + TP_plus_FN - TP + 1e-6)
# Compute mIoU with only the actual classes
mask = TP_plus_FN < 1e-3
counts = np.sum(1 - mask, axis=-1, keepdims=True)
mIoU = np.sum(IoU, axis=-1, keepdims=True) / (counts + 1e-6)
# If class is absent, place mIoU in place of 0 IoU to get the actual mean later
IoU += mask * mIoU
return IoU
@staticmethod
def get_class_weights(dataset_name):
# pre-calculate the number of points in each category
num_per_class = []
if dataset_name == 'S3DIS':
num_per_class = np.array([3370714, 2856755, 4919229, 318158, 375640, 478001, 974733,
650464, 791496, 88727, 1284130, 229758, 2272837], dtype=np.int32)
elif dataset_name == 'Semantic3D':
num_per_class = np.array([5181602, 5012952, 6830086, 1311528, 10476365, 946982, 334860, 269353],
dtype=np.int32)
elif dataset_name == 'SemanticKITTI':
num_per_class = np.array([55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858,
240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114,
9833174, 129609852, 4506626, 1168181])
elif dataset_name == 'Vienna':
num_per_class = np.array([ 147689, 22002414, 12808891, 1815247, 217141, 155430, 511633, 287699,
1885243, 12058201, 974169, 5137134, 1478824, 1700034, 490711,
712267, 84978, 544367])
elif dataset_name == 'Vienna_ignore':
num_per_class = np.array([ 22002414, 12808891, 1815247, 217141, 155430, 511633, 287699,
1885243, 12058201, 974169, 5137134, 1478824, 1700034, 490711,
712267, 84978, 544367]) # num_classes = 17
# elif dataset_name == 'Vienna':
# num_per_class = np.array([ 187654, 22002414, 12808891, 1815247 , 171397 , 155430 , 511633 , 287699,
# 1885243 , 45744 ,12649487 , 385337, 5134680, 1541585, 1637273, 490711,
# 712267, 45013, 544367])
# elif dataset_name == 'Vienna_ignore':
# num_per_class = np.array([ 22002414, 12808891, 1815247, 171397, 155430, 511633, 287699,
# 1885243, 45744, 12649487, 385337, 5134680, 1541585, 1637273, 490711,
# 712267, 45013, 544367]) # num_classes = 18
elif dataset_name == 'HongKong':
num_per_class = np.array([ 136199, 2160210, 419832, 2484430, 1065314, 901052, 108072, 310226,
140688, 49626])
elif dataset_name == 'HongKong_ignore':
num_per_class = np.array([ 2160210, 419832, 2484430, 1065314, 901052, 108072, 310226,
140688, 49626])
weight = num_per_class / float(sum(num_per_class))
ce_label_weight = 1 / (weight + 0.02)
return np.expand_dims(ce_label_weight, axis=0)
# remap label according config file
@staticmethod
def remap_label(label, remap_dict):
for i, value in enumerate(remap_dict):
label[label == value] = remap_dict[value]
return label
class Plot:
@staticmethod
def random_colors(N, bright=True, seed=0):
brightness = 1.0 if bright else 0.7
hsv = [(0.15 + i / float(N), 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(seed)
random.shuffle(colors)
return colors
@staticmethod
def draw_pc_sem_ins(pc_xyz, pc_sem_ins, plot_colors=None):
"""
pc_xyz: 3D coordinates of point clouds
pc_sem_ins: semantic or instance labels
plot_colors: custom color list
"""
if plot_colors is not None:
ins_colors = plot_colors
else:
ins_colors = Plot.random_colors(len(np.unique(pc_sem_ins)) + 1, seed=2)
##############################
sem_ins_labels = np.unique(pc_sem_ins)
sem_ins_bbox = []
Y_colors = np.zeros((pc_sem_ins.shape[0], 3))
for id, semins in enumerate(sem_ins_labels):
valid_ind = np.argwhere(pc_sem_ins == semins)[:, 0]
if semins <= -1:
tp = [0, 0, 0]
else:
if plot_colors is not None:
tp = ins_colors[semins]
else:
tp = ins_colors[id]
Y_colors[valid_ind] = tp
### bbox
valid_xyz = pc_xyz[valid_ind]
xmin = np.min(valid_xyz[:, 0]);
xmax = np.max(valid_xyz[:, 0])
ymin = np.min(valid_xyz[:, 1]);
ymax = np.max(valid_xyz[:, 1])
zmin = np.min(valid_xyz[:, 2]);
zmax = np.max(valid_xyz[:, 2])
sem_ins_bbox.append(
[[xmin, ymin, zmin], [xmax, ymax, zmax], [min(tp[0], 1.), min(tp[1], 1.), min(tp[2], 1.)]])
Y_semins = np.concatenate([pc_xyz[:, 0:3], Y_colors], axis=-1)
Plot.draw_pc(Y_semins)
return Y_semins