-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifiers.py
249 lines (216 loc) · 8.06 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import numpy as np
import numba as nb
from cvxopt import matrix, solvers
from cvxopt.solvers import qp
from scipy.optimize import minimize
from numba import njit, prange
import time
from SWkernel import SW_K_Mat, SW_kernel
from SpectrumKernel import spectrum_kernel
from mismatchKernel import mismatchKernel
from WDkernel import WD_kernel
from basicKernels import linear_kernel, rbf_kernel, poly_kernel
from CreateKernelMatrix import compute_Ker_mat
solvers.options['show_progress'] = False
def log_rg_loss(x):
return np.log(1 + np.exp(-x))
class Ridge_Classifier():
def __init__(self,lam = 1e-5, kernel_name = 'linear',Kernel_mat = None , kernel = linear_kernel,
spectrum_size=8, loss_name = 'least_squares', loss_func = log_rg_loss , m=0, size=4, d=3):
super(Ridge_Classifier ,self).__init__()
self.kernel_name = kernel_name
self.kernel = kernel
self.loss_func = loss_func
self.loss_name = loss_name
self.lam = lam
self.alpha = None
self.K = Kernel_mat
self.data = None
self.spectrum_size = spectrum_size
self.size = size
self.m = m
self.d = d
def fit(self, data, Y , Kernel_train = None):
L = Y.copy()
L[L==0] = -1
if not (data is None):
N = len(data)
self.data = data.copy()
if not (Kernel_train is None):
N = len(Kernel_train)
self.K = Kernel_train.copy()
if Kernel_train is None:
start = time.time()
if self.kernel_name == 'linear' :
self.K = self.data @ self.data.T
elif self.kernel_name == 'rbf':
var = 1
self.K = np.zeros((self.data.shape[0], self.data.shape[0]))
for i , x in enumerate(self.data):
self.K[i,:] = np.linalg.norm(self.data-x,axis=1)**2
self.K = np.exp(-self.K/(2*var))
elif self.kernel_name == 'WD_kernel':
self.K = compute_Ker_mat(self.kernel, self.data, d=self.d)
elif self.kernel_name == 'spectrum_kernel':
self.K = compute_Ker_mat(self.kernel, self.data, spectrum_size=self.spectrum_size, normalize=False)
elif self.kernel_name == 'mismatchKernel':
self.K = compute_Ker_mat(self.kernel, self.data, m=self.m , size =self.size)
elif self.kernel_name == 'LA_kernel':
listed = list(self.data)
self.K = SW_K_Mat(listed)
else:
self.K = compute_Ker_mat(self.kernel, self.data)
print('Kernel computed')
print("time:", time.time()-start)
if self.loss_name == 'least_squares':
n = self.K.shape[0]
self.alpha = np.linalg.inv(self.K + n * self.lam * np.eye(n)) @ L
else :
f = lambda alpha : np.mean(self.loss_func(L * (self.K @ alpha.T))) + self.lam * alpha @ self.K @ alpha.T
self.alpha = minimize(f, np.zeros(self.data.shape[0]))['x']
def predict(self, X, predict_train = False ,Kernel_val_train= None):
f = []
if Kernel_val_train is None:
for x in X:
f_x = 0
for i in range(self.alpha.shape[0]):
if self.kernel_name == 'spectrum_kernel':
f_x += self.kernel(x ,self.data[i], spectrum_size=self.spectrum_size) * self.alpha[i]
elif self.kernel_name == 'WD_kernel':
f_x += self.kernel(x ,self.data[i], d=self.d) * self.alpha[i]
elif self.kernel_name == 'mismatchKernel':
f_x += self.kernel(x ,self.data[i], m=self.m, size = self.size) * self.alpha[i]
elif self.kernel_name =='LA_kernel':
y = self.data[i]
f_x += self.kernel(x,y) * self.alpha[i]
else:
f_x += self.kernel(x ,self.data[i]) * self.alpha[i]
if f_x > 0:
f.append(1)
else:
f.append(0)
else:
f = np.maximum(0, np.sign(Kernel_val_train @ self.alpha))
if predict_train == True:
f_train = np.maximum(0, np.sign(self.K @ self.alpha))
return f , f_train
else:
return f
class SVM():
def __init__(self, kernel_name = None, kernel=linear_kernel , spectrum_size=8, C=1.0, m=1 , size=5 , scale=1, d=3):
super(SVM ,self).__init__()
self.kernel_name = kernel_name
self.kernel = kernel
self.C = C
self.alpha = None
self.w = None
self.bias = None
self.K = None
self.data = None
self.scale = scale
self.spectrum_size = spectrum_size
self.size = size
self.m = m
self.d = d
def fit(self, data, Y , Kernel_train = None):
L = Y.copy()
L[L==0] = -1
if not (data is None):
N = len(data)
self.data = data
if not (Kernel_train is None):
N = len(Kernel_train)
self.K = Kernel_train.copy()
if Kernel_train is None:
start = time.time()
if self.kernel_name == 'linear' :
self.K = self.data @ self.data.T
elif self.kernel_name == 'rbf':
var = 1
self.K = np.zeros((self.data.shape[0], self.data.shape[0]))
for i , x in enumerate(self.data):
self.K[i,:] = np.linalg.norm(self.data-x,axis=1)**2
self.K = np.exp(-self.K/(2*var))
elif self.kernel_name == 'WD_kernel':
self.K = compute_Ker_mat(self.kernel, self.data, d=self.d)
elif self.kernel_name == 'spectrum_kernel':
self.K = compute_Ker_mat(self.kernel, self.data, spectrum_size=self.spectrum_size, normalize=False)
elif self.kernel_name == 'mismatchKernel':
self.K = compute_Ker_mat(self.kernel, self.data, m=self.m , size =self.size, normalize=True)
elif self.kernel_name == 'SW_kernel':
# listed = nb.typed.List(list(self.data))
listed = list(self.data)
self.K = SW_K_Mat(listed)
else:
self.K = compute_Ker_mat(self.kernel, self.data)
print('Kernel computed')
print("time:", time.time()-start)
self.K = self.K/self.scale
P = matrix(self.K)
q = matrix(-L, (N, 1), 'd')
G = matrix(np.vstack((np.diag(L), -np.diag(L))), (2*N, N), 'd')
h = matrix(np.vstack((np.ones((N, 1))*self.C, np.zeros((N, 1)))))
sol = qp(P, q, G, h)
self.alpha = np.array(sol['x']).reshape(N)
def predict(self, X, predict_train = False ,Kernel_val_train= None):
f = []
if Kernel_val_train is None:
for x in X:
f_x = 0
for i in range(self.alpha.shape[0]):
if self.kernel_name == 'spectrum_kernel':
f_x += self.kernel(x ,self.data[i], spectrum_size=self.spectrum_size) * self.alpha[i]
elif self.kernel_name == 'WD_kernel':
f_x += self.kernel(x ,self.data[i], d=self.d) * self.alpha[i]
elif self.kernel_name == 'mismatchKernel':
f_x += self.kernel(x ,self.data[i], m=self.m, size = self.size) * self.alpha[i]
elif self.kernel_name =='SW_kernel':
y = self.data[i]
f_x += self.kernel(x,y) * self.alpha[i]
else:
f_x += self.kernel(x ,self.data[i]) * self.alpha[i]
if f_x > 0:
f.append(1)
else:
f.append(0)
else:
f = np.maximum(0, np.sign(Kernel_val_train @ self.alpha))
if predict_train == True:
f_train = np.maximum(0, np.sign(self.K @ self.alpha))
return f , f_train
else:
return f
def predict_mismatch(self , X_val):
n = len(X_val)
l = len(self.data)
f = np.zeros(n)
for i in range(n):
f_x = np.zeros(l)
x = X_val[i]
for j in range(l):
y = self.data[j]
f_x[j] = (mismatchKernel(x,y,self.m,self.size) / np.sqrt(mismatchKernel(x,x,self.m,self.size)*mismatchKernel(y,y,self.m,self.size)) )* self.alpha[j]
s = np.sum(f_x)
if s > 0:
f[i] = 1
else:
f[i] = 0
return f
@staticmethod
@njit
def predict_SW(X_val,data,alpha):
n = len(X_val)
m = len(data)
f = np.zeros(n)
for i in prange(n):
f_x = np.zeros(m)
x = X_val[i]
for j in prange(m):
y = data[j]
f_x[j] = SW_kernel(x,y) * alpha[j]
s = np.sum(f_x)
if s > 0:
f[i] = 1
else:
f[i] = 0
return f