-
Notifications
You must be signed in to change notification settings - Fork 17
/
dataset_gpu.py
239 lines (217 loc) · 8.81 KB
/
dataset_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
""" Data i/o interface for MESS (GPU ver)
"""
import os, glob, time
import torch
from torch.utils.data import Dataset, DataLoader
import obspy
from obspy import read, UTCDateTime
import numpy as np
import config
# import config
cfg = config.Config()
get_data_dict = cfg.get_data_dict
num_workers = cfg.num_workers
samp_rate = cfg.samp_rate
freq_band = cfg.freq_band
temp_win_det = cfg.temp_win_det
temp_win_p = cfg.temp_win_p
temp_win_s = cfg.temp_win_s
temp_win_npts = [int(sum(win)*samp_rate) for win in [temp_win_det, temp_win_p, temp_win_s]]
min_sta = cfg.min_sta
max_sta = cfg.max_sta
def read_data(date, data_dir, sta_dict):
""" Read data (continuous waveform)
Input
data_dict = {net_sta: stream_paths}
Output
data_dict = {net_sta: [[data_cuda, norm_data_cuda], [data, norm_data]]}
"""
t=time.time()
print('reading continuous data')
data_dict = get_data_dict(date, data_dir)
to_del = [net_sta for net_sta in data_dict.keys() if net_sta not in sta_dict]
for net_sta in to_del: data_dict.pop(net_sta)
data_dataset = Data(data_dict, sta_dict)
data_loader = DataLoader(data_dataset, num_workers=num_workers, batch_size=None, pin_memory=True)
todel = []
for (net_sta, data_i) in data_loader:
if len(data_i)==0: todel.append(net_sta); continue
data_dict[net_sta] = [data_i[0]] + [cpu2cuda(di) for di in data_i]
print('read {} | time {:.1f}s'.format(net_sta, time.time()-t))
for net_sta in todel: data_dict.pop(net_sta)
return data_dict
def read_temp(temp_pha, temp_root):
""" Read templates
Input
temp_pha (txt): template phase file
event line: ot, lat, lon, dep, mag
phase line: net.sta, tp, ts, s_amp, p_snr, s_snr
temp_root: root dir for template data
temp_root/temp_name/net.sta.chn
*note: temp_name == ot in yyyymmddhhmmss.ss
Output
temp_list = [temp_name, temp_loc, temp_pick_dict]
, where temp_pick_dict[net_sta] = [temp, norm_temp, dt_list]
temp = [temp_det, temp_p, temp_s]
norm_temp = [norm_det, norm_p, norm_s]
dt_list = [ttp, tts, dt_ot]
"""
# 1. read phase file
print('reading template phase file')
temp_list = read_ftemp(temp_pha)
# 2. read temp data
print('reading templates')
t=time.time()
todel = []
temp_dataset = Templates(temp_list, temp_root)
temp_loader = DataLoader(temp_dataset, num_workers=num_workers, batch_size=None, pin_memory=True)
for i, [temp_name, temp_loc, temp_pick_dict] in enumerate(temp_loader):
if len(temp_pick_dict)<min_sta: todel.append(i)
temp_list[i] = [temp_name, temp_loc, temp_pick_dict]
if i%100==0: print('{}th template | time {:.1f}s'.format(i, time.time()-t))
temp_list = [temp_list[i] for i in range(len(temp_list)) if i not in todel]
return temp_list
class Data(Dataset):
""" Dataset for reading data (continuous waveform)
"""
def __init__(self, data_dict, sta_dict):
self.data_dict = data_dict
self.sta_list = sorted(list(data_dict.keys()))
self.sta_dict = sta_dict
def __getitem__(self, index):
# read stream
net_sta = self.sta_list[index]
st_paths = self.data_dict[net_sta]
gain = self.sta_dict[net_sta][3]
stream = read_stream(st_paths, gain)
if len(stream)!=3: return net_sta, []
stream = preprocess(stream)
if len(stream)!=3: return net_sta, []
start_time = stream[0].stats.starttime
end_time = stream[0].stats.endtime
date = UTCDateTime((start_time + (end_time - start_time)/2).date)
stream = trim_stream(stream, date, date+86400)
data_np = st2np(stream)[:, 0:int(86400*samp_rate)]
# calc norm data (for calc_cc)
data_cum = [np.cumsum(di**2) for di in data_np]
norm_data = np.array([np.sqrt(di[temp_win_npts[0]:] - di[:-temp_win_npts[0]]) for di in data_cum])
return net_sta, [data_np.astype(np.float32), norm_data.astype(np.float32)]
def __len__(self):
return len(self.sta_list)
class Templates(Dataset):
""" Dataset for reading templates
"""
def __init__(self, temp_list, temp_root):
self.temp_list = temp_list
self.temp_root = temp_root
def __getitem__(self, index):
# read one template
temp_name, temp_loc, pick_dict_picks = self.temp_list[index]
temp_dir = os.path.join(self.temp_root, temp_name.split('_')[1])
ot = temp_loc[0]
# select by tp (epicentral distance)
dtype = [('net_sta','O'),('tp','O')]
pick_list = np.array([(net_sta, tp) for net_sta, [tp,_] in pick_dict_picks.items()], dtype=dtype)
sta_list = list(np.sort(pick_list, order='tp')[0:max_sta]['net_sta'])
# read data
pick_dict_data = {}
for net_sta, [tp,ts] in pick_dict_picks.items():
if net_sta not in sta_list: continue
# read template date
st_paths = sorted(glob.glob(os.path.join(temp_dir, '%s.*'%net_sta)))
if len(st_paths)!=3: continue
st = read_stream(st_paths, None)
if len(st)!=3: continue
# cut template data
temp_det = trim_stream(st, tp-temp_win_det[0], tp+temp_win_det[1])
temp_p = trim_stream(st, tp-temp_win_p[0], tp+temp_win_p[1])
temp_s = trim_stream(st, ts-temp_win_s[0], ts+temp_win_s[1])
temp = [st2np(st_i).astype(np.float32) for st_i in [temp_det, temp_p, temp_s]]
temp = [temp[i][:,0:temp_win_npts[i]] for i in range(3)]
# calc norm
norm_det = np.array([sum(tr**2)**0.5 for tr in temp[0]])
norm_p = np.array([sum(tr**2)**0.5 for tr in temp[1]])
norm_s = np.array([sum(tr**2)**0.5 for tr in temp[2]])
norm_temp = [norm_det, norm_p, norm_s]
# get time shift (dt)
dt_list = [int(dt*samp_rate) for dt in [ot-tp+temp_win_det[0], tp-ot, ts-ot]]
pick_dict_data[net_sta] = [temp, norm_temp, dt_list]
return temp_name, temp_loc, pick_dict_data
def __len__(self):
return len(self.temp_list)
# read template phase file
def read_ftemp(ftemp):
f=open(ftemp); lines=f.readlines(); f.close()
temp_list = []
for line in lines:
codes = line.split(',')
if len(codes[0])>=14:
id_name = codes[0]
ot = UTCDateTime(codes[1])
lat, lon, dep, mag = [float(code) for code in codes[2:]]
event_loc = [ot, lat, lon, dep, mag]
temp_list.append([id_name, event_loc, {}])
else:
net_sta = codes[0]
tp, ts = [UTCDateTime(code) for code in codes[1:3]]
temp_list[-1][-1][net_sta] = [tp, ts]
return temp_list
def preprocess(stream):
# time alignment
start_time = max([trace.stats.starttime for trace in stream])
end_time = min([trace.stats.endtime for trace in stream])
if start_time>end_time: print('bad data!'); return []
st = stream.slice(start_time, end_time)
st = st.detrend('demean').detrend('linear').taper(max_percentage=0.05, max_length=5.)
# resample data
org_rate = st[0].stats.sampling_rate
if org_rate!=samp_rate: st.resample(samp_rate)
for ii in range(3):
st[ii].data[np.isnan(st[ii].data)] = 0
st[ii].data[np.isinf(st[ii].data)] = 0
# filter
freq_min, freq_max = freq_band
if freq_min and freq_max:
return st.filter('bandpass', freqmin=freq_min, freqmax=freq_max)
elif not freq_max and freq_min:
return st.filter('highpass', freq=freq_min)
elif not freq_min and freq_max:
return st.filter('lowpass', freq=freq_max)
else:
print('filter type not supported!'); return []
def read_stream(st_paths, gain=None):
# read data
try:
st = read(st_paths[0])
st += read(st_paths[1])
st += read(st_paths[2])
except:
print('bad data'); return []
if not gain: return st
# remove gain
start_time = max([tr.stats.starttime for tr in st])
end_time = min([tr.stats.endtime for tr in st])
st_time = start_time + (end_time-start_time)/2
# if format 1: same gain for 3-chn & time invariant
if type(gain)==float:
for ii in range(3): st[ii].data = st[ii].data / gain
# if format 2: different gain for 3-chn & time invariant
elif type(gain[0])==float:
for ii in range(3): st[ii].data = st[ii].data / gain[ii]
# format 3: different gain for 3-chn & time variant
elif type(gain[0])==list:
for [ge,gn,gz,t0,t1] in gain:
if t0<st_time<t1: break
for ii in range(3): st[ii].data = st[ii].data / [ge,gn,gz][ii]
return st
def trim_stream(stream, start_time, end_time):
return stream.copy().trim(start_time, end_time, pad=True, fill_value=0.)
def cpu2cuda(data):
return data.float().cuda(non_blocking=True)
def st2np(stream):
npts = min([len(trace) for trace in stream])
return np.array([trace.data[0:npts] for trace in stream], dtype=np.float64)
def dtime2str(dtime):
date = ''.join(str(dtime).split('T')[0].split('-'))
time = ''.join(str(dtime).split('T')[1].split(':'))[0:9]
return date + time