forked from Paitesanshi/TimeDebias
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot.py
52 lines (42 loc) · 1.42 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import csv
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from sklearn.decomposition import PCA
import numpy as np
import math
import pandas as pd
import seaborn as sns
# 打开 CSV 文件并读取数据
x, y, z = [], [], []
columns = [i for i in range(1, 11)]
index = [i for i in range(1, 11)]
df = pd.DataFrame(np.random.randn(10, 10), columns=columns, index=index)
with open('excel/robust/TMF_ml_1m_global_rd_dr_all.csv', 'r') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
x.append(int(row[1]))
y.append(int(row[2]))
z.append(float(row[5]))
df.loc[int(row[1]),int(row[2])]=float(row[5])
print(df)
# distances = [math.sqrt(x ** 2 + y ** 2) for x, y in zip(x, y)]
#创建 3D 网格图
# fig = plt.figure()
# ax = plt.axes(projection='3d')
# ax.plot_trisurf(x, y, z, cmap='viridis', edgecolor='none')
# plt.pcolormesh(x, y, z, cmap='viridis')
# pdf = pd.DataFrame({'x': x, 'y': y, 'z': z})
f, ax = plt.subplots(figsize = (10, 4))
cmap = sns.cubehelix_palette(start = 1, rot = 3, gamma=0.8, as_cmap = True)
sns.heatmap(df, linewidths = 0.5, ax = ax,annot=True,fmt='.4f',xticklabels=True, yticklabels=True)
# sns.heatmap(df, cmap='viridis',annot=True)
plt.show()
# plt.show()
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# #
# # x, y = np.meshgrid(x, y)
# print(x,y,z)
# ax.bar3d(x, y, z, 0.5, 0.5, 0.5, alpha=1)
# ax.set_zlim3d(0.683, 0.7)
plt.show()