-
-
Notifications
You must be signed in to change notification settings - Fork 29
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
How can change the models two have two inputa. #25
Comments
I used this functions: def rename_layers(model, prefix):
for i, layer in enumerate(model.layers):
# Use the private attribute _name to change the layer name
layer.name = f"{prefix}_{layer.name}"
return model
def create_model(model_name, learning_rate, loss_function, optimizer, class_num=3):
if backend.image_data_format() == 'channels_last':
bn_axis = 4
else:
bn_axis = 1
inputs_ct = Input((None, None, None, 1))
x = ZeroPadding3D(padding=(3, 3, 3), name='inputs_1_conv1_pad')(inputs_ct)
x = Conv3D(64, (7, 7, 7),
strides=(2, 2, 2),
padding='valid',
kernel_initializer='he_normal',
name='inputs_1_conv1')(x)
x = BatchNormalization(axis=bn_axis, name='inputs_1_bn_conv1')(x)
x = Activation('relu')(x)
x_ct = MaxPooling3D((3, 3, 3), strides=(2, 2, 2))(x)
#
inputs_pet = Input((None, None, None, 1))
x = ZeroPadding3D(padding=(3, 3, 3), name='inputs_2_conv1_pad')(inputs_pet)
x = Conv3D(64, (7, 7, 7),
strides=(2, 2, 2),
padding='valid',
kernel_initializer='he_normal',
name='inputs_2_conv1')(x)
x = BatchNormalization(axis=bn_axis, name='inputs_2_bn_conv1')(x)
x = Activation('relu')(x)
x_pet = MaxPooling3D((3, 3, 3), strides=(2, 2, 2))(x)
# x = add([x_1, x_2])
x = concatenate ([x_ct, x_pet])
input_tensor = Activation('relu')(x)
##########
modelPoint, preprocess_input = Classifiers.get(model_name)
model = modelPoint(include_top=True, input_tensor=input_tensor, classes=class_num, weights=None)
#compile new model
model.compile(optimizer=optimizer(learning_rate=learning_rate),
loss=loss_function,
metrics=['acc'])
return model
# model_name = 'resnet50'
# model = create_model(model_name)
# model.summary()
def create_model_2_model_padding(model_name, learning_rate, loss_function, optimizer, class_num=3):
modelPoint, preprocess_input = Classifiers.get(model_name)
inputs_ct = Input((None, None, None, 1))
inputs_ct = ZeroPadding3D(padding=(3, 3, 3), name='inputs_ct_inputs_1_conv1_pad')(inputs_ct)
inputs_pet = Input((None, None, None, 1))
inputs_ct = ZeroPadding3D(padding=(3, 3, 3), name='inputs_pet_inputs_1_conv1_pad')(inputs_ct)
model_ct = modelPoint(include_top=False, input_tensor=inputs_ct)
model_ct = rename_layers(model_ct, 'model_ct')
model_pet = modelPoint(include_top=False, input_tensor=inputs_pet)
model_pet = rename_layers(model_pet, 'model_pet')
combined = concatenate([model_ct.output, model_pet.output])
# flattened = Flatten()(combined)
fc1 = Dense(128, activation='relu', name="AddedDense1")(combined)
output = Dense(class_num, activation='softmax', name="AddedDense2")(fc1)
model = Model(inputs=[inputs_ct, inputs_pet], outputs=output)
#compile new model
model.compile(optimizer=optimizer(learning_rate=learning_rate),
loss=loss_function,
metrics=['acc'])
return model
# model_name = 'resnet50'
# model = create_model_2_model_padding(model_name)
# model.summary()
def create_model_2_model(model_name, learning_rate, loss_function, optimizer, class_num=3):
modelPoint, preprocess_input = Classifiers.get(model_name)
inputs_ct = Input((None, None, None, 1))
inputs_pet = Input((None, None, None, 1))
model_ct = modelPoint(include_top=False, input_tensor=inputs_ct)
model_ct = rename_layers(model_ct, 'model_ct')
model_pet = modelPoint(include_top=False, input_tensor=inputs_pet)
model_pet = rename_layers(model_pet, 'model_pet')
combined = concatenate([model_ct.output, model_pet.output])
# flattened = Flatten()(combined)
fc1 = Dense(128, activation='relu', name="AddedDense1")(combined)
output = Dense(class_num, activation='softmax', name="AddedDense2")(fc1)
model = Model(inputs=[inputs_ct, inputs_pet], outputs=output)
#compile new model
model.compile(optimizer=optimizer(learning_rate=learning_rate),
loss=loss_function,
metrics=['acc'])
return model
# model_name = 'resnet50'
# model = create_model_2_model(model_name)
# model.summary()
def create_model_2_model_patch_size(model_name, patch_x, patch_y, patch_z, learning_rate, loss_function, optimizer, class_num=3):
modelPoint, preprocess_input = Classifiers.get(model_name)
inputs_ct = Input((patch_x, patch_y, patch_z, 1))
inputs_pet = Input((patch_x, patch_y, patch_z, 1))
model_ct = modelPoint(include_top=False, input_tensor=inputs_ct)
model_ct = rename_layers(model_ct, 'model_ct')
model_pet = modelPoint(include_top=False, input_tensor=inputs_pet)
model_pet = rename_layers(model_pet, 'model_pet')
combined = concatenate([model_ct.output, model_pet.output])
flattened = Flatten()(combined)
fc1 = Dense(128, activation='relu', name="AddedDense1")(flattened)
output = Dense(class_num, activation='softmax', name="AddedDense2")(fc1)
model = Model(inputs=[inputs_ct, inputs_pet], outputs=output)
#compile new model
model.compile(optimizer=optimizer(learning_rate=learning_rate),
loss=loss_function,
metrics=['acc'])
return model
# patch_x = 20
# patch_y = 20
# patch_z = 60
# model_name = 'resnet50'
# model = create_model_2_model_size(model_name, patch_x, patch_y, patch_z)
# model.summary() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I want design models based on some famous models that give two inputs. You designed more of them and I want change them to get two inputs same time.
can you help me how can I change your created models to do that?
The text was updated successfully, but these errors were encountered: